Solar syngas streamed from photonic-enhanced perovskite photovoltaics: paving th...
Solar syngas streamed from photonic-enhanced perovskite photovoltaics: paving the way for market deployment
In the face of the escalating environmental challenges, the transition to renewable energies has emerged as a critical and pressing necessity for a sustainable future. Installation of photovoltaic panels is one way to contribute t...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2021-126444OB-I00
CELULAS SOLARES DE HETEROUNION ESTABLES Y CON ALTA EFICIENCI...
363K€
Cerrado
RTI2018-095362-A-I00
CONTROL DE LA RECOMBINACION RADIATIVA EN CELULAS SOLARES FLE...
109K€
Cerrado
NEXUS
NEXt generation of sUstainable perovskite-Silicon tandem cel...
4M€
Cerrado
PID2021-122349OA-I00
CELDAS SOLARES EN TANDEM DE MATERIALES PEROVSKITA Y ORGANICO...
157K€
Cerrado
TED2021-131600B-C31
CELULAS SOLARES SOSTENIBLE Y MEJORADAS DE PEROVSKITA PARA AP...
265K€
Cerrado
PCI2020-112084
CELULAS SOLARES TANDEM SI/PEROVSKITA DE ALTA EFICIENCIA - EX...
80K€
Cerrado
Información proyecto SolarWay
Duración del proyecto: 27 meses
Fecha Inicio: 2024-03-25
Fecha Fin: 2026-06-30
Descripción del proyecto
In the face of the escalating environmental challenges, the transition to renewable energies has emerged as a critical and pressing necessity for a sustainable future. Installation of photovoltaic panels is one way to contribute to the decarbonization, but currently there is only one cost-effective technology available for commercial applications - silicon. Perovskite Solar Cells (PSC) have emerged recently as a very promising alternative, but some issues like poor stability and the use of an evaporated metallic back-contact are still hindering its way through industrialization. A promising holistic solution is to replace the metallic back-contact by a highly conductive carbon material. The challenge now is to match the efficiency obtained by the metal back-contact, by maximizing the carbon material’s conductivity, enhancing the interfacial contact or increasing the photon absorption. Regarding the latter issue, light trapping structures are a promising solution since they already proved successful at maximizing the current generation in silicon solar cells. Furthermore, large-scale deposition methods must be adopted to develop a realistic experimental procedure compatible with large-scale production, and the encapsulation must be optimized to maximize the life time of the solar module. Still, the intermittency nature of solar energy might create a mismatch between energy production and consumption. An effective solution is to convert the excess energy into syngas (mixture of CO and H2) by co-electrolysis of CO2 and water. This gas can then be converted into a synthetic fuel and replace the fossil fuels derivatives, contributing for the EU’s goal of achieving net-zero carbon-emission by 2050. The optimization of the solar-to-syngas system can be complex due to the extend of dependent processes in series, and thus a computing simulation is a strong tool for predicting the operation and maximizing the energy efficiency of the entire process.