Smart Synergy Mechanism between Electric Vehicle Charging and Flexibility Market...
Smart Synergy Mechanism between Electric Vehicle Charging and Flexibility Markets
Rapid integration of Electric Vehicles (EVs) in the transport sector is the key to achieving the Green Deal decarbonization targets. However, EV adoption is still low for several reasons, mainly concerns about the lack of charging...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
USER-CHI
innovative solutions for USER centric CHarging Infrastructur...
18M€
Cerrado
Project Buffer
Project Buffer a new solution to fast charging electrical...
71K€
Cerrado
SCALE
SCALE - Smart Charging ALignment for Europe
10M€
Cerrado
SCALE
SCALE - Smart Charging ALignment for Europe
10M€
Cerrado
Información proyecto ChargFlex
Duración del proyecto: 28 meses
Fecha Inicio: 2023-04-17
Fecha Fin: 2025-08-31
Líder del proyecto
AARHUS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
231K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Rapid integration of Electric Vehicles (EVs) in the transport sector is the key to achieving the Green Deal decarbonization targets. However, EV adoption is still low for several reasons, mainly concerns about the lack of charging infrastructure from the EV drivers' view, known as range anxiety. Many studies believe deploying more public EV charging stations (EVCSs) can ease this anxiety among EV drivers. Still, EVCSs are not yet widely available due to profitability issues and putting more stress on the grid. While the growth of the EVCSs is moving slowly, the number of household charger installations is growing rapidly. However, scarce studies have investigated the potential of household chargers in providing public charging services. Further, many households are already equipped with renewables and sell the surplus energy to the grid through local flexibility markets. With renewables, household chargers can provide cheaper charging services while minimizing the negative grid impacts of EV charging. This project intends to alleviate the range anxiety in two ways. First, we will enhance the charging infrastructure availability by encouraging households to sell surplus energy to EVs through a market framework called the charging market, besides flexibility markets. We will design a coordinated bidding strategy model from the household viewpoint based on AI to maximize profit from the two markets (Work Package 1). Second, we will improve charging infrastructure accessibility by developing an AI-based charging recommendation model to guide EV drivers on when and where to get recharged (Work Package 2). Finally, we will conduct software implementation and real-time performance validation of the proposed AI-based models (Work Package 3). The complementarity between me, the host supervisor's profile, the environment provided by the host, and the secondment ensure the achievement of this timely and innovative project and the dissemination and exploitation of the results.