Dynamic Airspace Configurations is at the core of the current and future European air traffic system. Enabling additional airspace capacity is a key factor to address the significant capacity challenges already faced in the recent...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Dynamic Airspace Configurations is at the core of the current and future European air traffic system. Enabling additional airspace capacity is a key factor to address the significant capacity challenges already faced in the recent past and to cope with the (expected) significant growth in air traffic, while maintaining safety, improving flight efficiency and reducing environmental impact.
In line with the strategic goal, the main objective of SMARTS is delivering the right amount of capacity, at the right moment and with the maximum efficiency to better serve the air traffic demand. The aim is to make the airspace design and configuration process more efficient, taking full advantage of the airspace potential. Sectors and sector configurations should ensure that Air Traffic Controllers can handle the associated workload comfortably.
To achieve this objective, SMARTS proposes to design sectors and sector configurations based on smart sectors. Smart in the sense that are aware of the environment (traffic and complexity prediction, capacity estimation, impact on other sectors), can act and adapt to improve the environment (create a sector design that produces a desired outcome in terms of workload/complexity), and can communicate with relevant actors (both local and network nodes). The smart sector is engendered by the design of basic volumes, and it is expected to provide the basis for an optimal distribution of workload, tailored around specific safety and operational requirements including complexity. As a by-product, the application of cost-efficient capacity actions allows a more accurate DCB planning in the early INAP phases thus reducing the number of required demand measures.