Innovating Works

QFreC

Financiado
Smart protonic quantum frequency circuits
Machine learning empowers computers to solve complex tasks such as pattern identification and strategy optimization with applications in, e.g., financial trading, fraud detection, medical diagnosis, and self-driving vehicles. The... Machine learning empowers computers to solve complex tasks such as pattern identification and strategy optimization with applications in, e.g., financial trading, fraud detection, medical diagnosis, and self-driving vehicles. The required computing power is, however, pushing existing computational resources to their limits, restraining their further advancement. In QFreC, I target the realization of photonic frequency-based quantum co-processors, specifically tailor-made to solve machine learning problems with capabilities commensurate with today’s high-power, yet energy-efficient processing needs. In particular, I will use a high-dimensional photonic quantum frequency comb approach, where photons have hundreds to thousands of discrete and equidistantly spaced frequency modes, giving access to large, scalable information capacity. For implementing quantum-accelerated machine learning tasks such as the classification of classical or quantum data, I will follow i) the exploration of quantum photonic frequency-domain processing with the adaptation of qubit learning concepts (vector-based and neural network-based approaches) to high-dimensional quantum representations, i.e., quDits, ii) the realization of efficiency-enhanced and novel integrated quantum frequency comb systems with quantum resources that allow real-world applications using highly nonlinear on-chip platforms, and iii) the development of reconfigurable, fast, and broadband experimental control schemes using, e.g., quadrature amplitude modulation formats and nonlinear optical processes. To enable stable, compact, cost- and energy-efficient quantum processing devices, the QFreC project will build on the advances of the well-developed telecommunications infrastructure and the photonic chip fabrication industry. QFreC merges photonic quantum frequency-domain circuits with quantum machine learning, enabling large-scale controllable quantum resources for the exploration of quantum-enhanced machine learning ver más
30/04/2026
LUH
1M€
Duración del proyecto: 66 meses Fecha Inicio: 2020-10-05
Fecha Fin: 2026-04-30

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2020-10-05
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2020-STG: ERC STARTING GRANTS
Cerrada hace 5 años
Presupuesto El presupuesto total del proyecto asciende a 1M€
Líder del proyecto
GOTTFRIED WILHELM LEIBNIZ UNIVERSITAET HANNOV... No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5