Smart phoTonic souRces harnEssing Advanced Multidimensional Light optimization towards machIne learNing Enhanced imaging
Modern photonic systems increasingly rely on complex nonlinear optical processes at the foundation of demanding applications spanning advanced light source development, metrology and imaging. Importantly, current flagship imaging...
ver más
Descripción del proyecto
Modern photonic systems increasingly rely on complex nonlinear optical processes at the foundation of demanding applications spanning advanced light source development, metrology and imaging. Importantly, current flagship imaging systems are based on nonlinear light-matter interactions provided by specialized lasers requiring complex operation and lacking tunability: means of controlling nonlinear phenomena and interactions are restricted, and reaching the ideal settings for a specific application can prove extremely challenging.
In this context, optical excitations can be inefficient (with e.g. excessive power or spectral coverage) and versatile means to drive coherent control of light properties are highly sought-after, for they provide the main building blocks for advanced imaging techniques. However, such control is currently constrained to few degrees of freedom provided by complex components ultimately hindering the accessible optical parameter space.
The realization of versatile, efficient and practical optical sources in compact forms would thus represent a fundamental revolution.
STREAMLINE constitutes an ambitious multidisciplinary program aiming to push forwards the development of 'smart photonic sources' for the creation of a promising new research field merging ultrafast nonlinear optics and computational imaging. The envisioned architecture, combining integrated and fibered components, will explore new multimode and input-dependent nonlinear dynamics via dedicated machine-learning schemes.
Together with suitable monitoring techniques, fully reconfigurable and tailored optical wavepackets (with ‘on-demand’ spectral, temporal and spatial properties), will be exploited towards disruptive nonlinear imaging and metrology techniques. Besides providing user-friendly operation with improved performances, blueprint dynamical imaging with custom light-matter interactions will unlock access to novel deep-learning strategies towards biological sample histology.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.