Modern technologies increasingly require smart and sustainable materials that adapt to their operating conditions in functional devices, such as those for efficient energy production and nanorobotics. Their development requires co...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2019-106383GB-C44
CORRELACIONES ESTRUCTURALES Y OPTICAS EN MACRO- Y NANO-MATER...
109K€
Cerrado
SPUREPER
Building perovskite superlattices by shape-tuning perovskite...
173K€
Cerrado
PRE2020-093444
NUEVAS PEROVSKITAS DE HALURO OBTENIDAS MEDIANTE LA ESTABILIZ...
99K€
Cerrado
BES-2009-014322
MOLECULAS PARA MATERIALES: SISTEMAS MOLECULARES PARA CRISTAL...
43K€
Cerrado
BES-2016-077681
LASERES DE ALTO RENDIMIENTO BASADOS EN PELICULAS DELGADAS DE...
93K€
Cerrado
PID2020-119628RB-C31
PEROVSKITAS DE METAL HALURO: NUEVAS ESTRUCTURAS PARA NUEVOS...
211K€
Cerrado
Información proyecto SmartHyMat
Duración del proyecto: 72 meses
Fecha Inicio: 2023-08-28
Fecha Fin: 2029-08-31
Líder del proyecto
TURUN YLIOPISTO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Modern technologies increasingly require smart and sustainable materials that adapt to their operating conditions in functional devices, such as those for efficient energy production and nanorobotics. Their development requires controlling complex material functions in response to external stimuli. While molecular machines demonstrated remarkable potential in a wide range of stimuli-responsive functions, this remains a challenge in the solid state, hampering their use in functional devices. Overcoming this necessitates an amphidynamic platform that is ordered yet permits molecular motion without compromising stimuli-responsiveness, while offering the ease of processing for device fabrication. SmartHyMat will address this enduring challenge by relying on the unparalleled capacity of hybrid halide perovskites to act as unique scaffolds for stimuli-responsive systems. These soft yet crystalline materials recently emerged as one of the leading semiconductors for thin-film optoelectronics, featuring mixed ionic-electronic conductivities and extraordinary performances in solution-processable devices. While their operational stability can be enhanced by incorporating organic moieties, their functionality remains limited to electronically inactive off-the-shelf materials. This project will realize the innovative potential of hybrid perovskites in adaptive nanotechnologies through molecular design, synthesis, and characterization of stimuli-responsive systems in hybrid solid-state architectures. Their potential will be demonstrated in unprecedented smart devices for power generation, memory, and actuation relevant for automation and nanorobotics. This will involve optoelectronic, such as smart solar cells, as well as optoionic devices exploiting mixed conductivities, including artificial synapses and neuromuscular junctions. The focus will be on environmentally friendly materials, setting the stage for an entirely new generation of smart and sustainable nanotechnologies.