Soft robots have the potential to be more robust, adaptable, and safer for human interaction than traditional rigid robots. State-of-the-art developments push these soft robotic systems towards applications such as rehabilitation...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
DPI2008-02647
MANIPULACION INTELIGENTE MEDIANTE PERCEPCION HAPTICA Y CONTR...
226K€
Cerrado
H2R
Bringing Human Neuromotor Intelligence to Robots
195K€
Cerrado
EQC2019-005821-P
Equipamiento para control distribuido, robótica industrial y...
267K€
Cerrado
DPI2011-25483
NUEVOS DESARROLLOS HACIA UN ROBOT EN CASA
148K€
Cerrado
DPI2011-27284
MEJORA DE LA INTERACCION FISICA EN ROBOTS HUMANOIDES MANIPUL...
131K€
Cerrado
ROBO-PARTNER
Seamless Human Robot Cooperation for Intelligent Flexible a...
9M€
Cerrado
Información proyecto FlowBot
Duración del proyecto: 64 meses
Fecha Inicio: 2020-08-13
Fecha Fin: 2025-12-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Soft robots have the potential to be more robust, adaptable, and safer for human interaction than traditional rigid robots. State-of-the-art developments push these soft robotic systems towards applications such as rehabilitation and diagnostic devices, exoskeletons for gait assistance, and grippers that can handle delicate objects. However, despite these exciting developments, there are two major challenges: (1) existing electronic control, intelligence and power of soft robots is too bulky to be embedded, and (2) the power efficiency of soft robots is extremely low. As a result, most existing soft robots still rely on tethers to deliver the required power and control.
To increase the application perspective of soft robots, I aim to ‘cut the tethers’, with the ultimate goal to realise fully autonomous and smart soft robots that can interact with humans and complex environments. To do so, I propose to replace electronics with embedded fluidic circuits in a three step approach. First, I aim to achieve intelligent behaviour in soft robots by embedding smart fluidic circuits, that have integrated fluidic sensors to allow for feedback with the environment. Then, I will close the fluidic circuit to be able to reuse elastic energy that is currently lost after each actuation cycle, to dramatically increase the efficiency of soft robots. Finally, I will embed a reliable pressure source based on chemical fuel regulated by soft fluidic circuits.
Taken together, I propose to develop new concepts to effectively power and control the behaviour of soft robots, and to achieve this I will develop new experimental standards, computational approaches, and generalise design principles. As a results, this research will pave the way for the first fully autonomous soft robots that are capable of operating for longer periods of time.