Smart Design Tool of High Performing ZIF Membranes for Important CO2 Related Sep...
Smart Design Tool of High Performing ZIF Membranes for Important CO2 Related Separations
With CO2 emissions being an eminent threat of unprecedent global impact, cheap ways to separate it from related gas mixtures are regarded as one of the biggest environmental challenges of our century. One alternative to the curren...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CTQ2012-31229
NUEVAS MEMBRANAS SELECTIVAS PARA LA SEPARACION DE CO2
63K€
Cerrado
PID2021-124863OB-I00
MEMBRANAS DE SALES FUNDIDAS PARA SEPARACION DE CO2 BASADAS E...
145K€
Cerrado
BES-2013-064266
NUEVAS MEMBRANAS SELECTIVAS PARA LA SEPARACION DE CO2
84K€
Cerrado
PID2019-109403RB-C22
MEMBRANAS DE MATRIZ MIXTA PARA SEPARACION EFICIENTE DE MEZCL...
64K€
Cerrado
CRYSTENG-MOF-MMM
Crystal Engineering of Metal Organic Frameworks for applicat...
1M€
Cerrado
PID2019-105827RB-I00
FUNCIONALIZACION DE MEMBRANAS COMO ELEMENTO CLAVE EN EL DESA...
286K€
Cerrado
Información proyecto SmartDeZIgn
Duración del proyecto: 25 meses
Fecha Inicio: 2020-03-24
Fecha Fin: 2022-04-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
With CO2 emissions being an eminent threat of unprecedent global impact, cheap ways to separate it from related gas mixtures are regarded as one of the biggest environmental challenges of our century. One alternative to the current methods is membrane-based separations. However, with today’s available materials, membranes are trapped in an upper boundary permeability-selectivity performance, below the target values of industry related applications. Zeolitic-imidazolate frameworks (ZIFs) can lead to the development of membranes with high performance due to their functionalization that alters their separation performance. They haven’t achieved the status of game changer materials, though, due to limited knowledge of the structural modification-separation performance correlation. Although there are indications that replacement of the organic linker or the metal in ZIFs, affects considerably the diffusivity and separation of gases, no systematic investigation has been carried towards this direction.
I propose a novel method for the design of ZIFs of unprecedented selectivity for CO2 urgent separations: H2/CO2, CO2/N2 and CO2/CH4. The design will be based on the substitution of the organic linker and/or the metal centers of ZIFs. I will develop a computational tool based on machine learning methods which will screen all the suitable metals/linkers in combination with the hundreds of available ZIF topologies. The algorithm’s goal will be to find the missing correlation between these replacements and their impact on the separation efficiency of ZIFs. To achieve this, and contrary to the current screening machine learning-based methods, which focus solely on static host-guest interactions (sorption), my algorithm will take into account also the diffusivity (the governing mechanism in membrane-based separations), by adopting realistic structural flexibility response. This will facilitate the design of the optimum material for the three separations.