The management and reconstruction of bone defects is a significant global healthcare challenge. While autografts offer ideal compatibility, they are often not suitable for large bone defects, and allografts suffer from potential i...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
ADREEM
Adding Another Dimension Arrays of 3D Bio Responsive Mater...
2M€
Cerrado
SAF2017-83118-R
ARQUITECTURAS POLIMERICAS 3D ACTIVAS PARA MEDICINA REGENERAT...
127K€
Cerrado
RTC-2016-5451-1
DESARROLLO DE SISTEMAS DE BIOIMPRESIÓN Y BIOTINTAS PARA REGE...
204K€
Cerrado
PTQ2023-013086
Bioimpresión 3D de sustitutos óseos personalizados para la r...
92K€
Cerrado
MultiFun CP
Multifunctional Conducting Polymer Devices for Electrorespon...
222K€
Cerrado
BioForceInk
Bioactive reinforcing bioink for hybrid bioprinting of impla...
Cerrado
Información proyecto SBR
Duración del proyecto: 61 meses
Fecha Inicio: 2019-11-24
Fecha Fin: 2024-12-31
Líder del proyecto
PANEPISTIMIO PATRON
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
6M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The management and reconstruction of bone defects is a significant global healthcare challenge. While autografts offer ideal compatibility, they are often not suitable for large bone defects, and allografts suffer from potential immunorejection.The limited efficacy of conventional treatment strategies for large bone defects and the increasing aged population, has inspired the consortium to propose a SMART RESORBABLE BONE (SRB) IMPLANT embedding stem cells and bioactive agents with the aim of a controllable and fast restoration. The proposed solution includes 3D printed medical grade polymers enriched with electrospun fibers (for increased mechanical properties) that can be customized for patient physiology, pathology, and gender. The scaffold design will ensure easy and minimal Injury placement, and will embed different sensors for monitoring e.g. pressure, pH value and temperature based on biocompatible conductive inks. The smart implant will thus be able to provide vital information of implant performance in terms of bone growth and infection/inflammation. The proposed method is unique because it includes a customized smart implant (3D printed parts with adjustable sensors and communication electronic system), together with tissue engineering methods i.e. in-vitro programming of stem cells for embedding into the smart implant. The proposed solution introduces an innovative regenerative chain, from early testing and characterization (identification/adjustement of the proper specifications) and embedding regenerative stem cells and particulate bioactive agents into the smart implant in preclinical research (in-vitro). The in vivo proof of concept of SBR solution will be tested in (large animal model) preclinical studies within the scope of the project. Finally the regulatory and commercialization strategy on how to further explore the proposed concept and deliver it for clinical testing will be elaborated.