Smart 4D biodegradable metallic shape shifting implants for dynamic tissue restoration
Reconstructive surgeries frequently require multiple, often complex, procedures at high social and economic costs. A shape-morphing implant that can be implanted using less invasive procedures and that then undergoes predesigned s...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FJC2019-039925-I
Development of 3D printed biodegradable scaffolds for tissue...
50K€
Cerrado
MagnetoPrint
MagnetoPrint Sizing and Magnetically assisted 3D Printing o...
203K€
Cerrado
Duración del proyecto: 51 meses
Fecha Inicio: 2022-03-24
Fecha Fin: 2026-06-30
Líder del proyecto
IMDEA MATERIALES
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
| 9M€
Presupuesto del proyecto
3M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Reconstructive surgeries frequently require multiple, often complex, procedures at high social and economic costs. A shape-morphing implant that can be implanted using less invasive procedures and that then undergoes predesigned shape changes, leading to tissue expansion and allowing for complete degradation coupled with tissue regeneration, is a radically new treatment concept. BIOMET4D aims to create a new generation of shape-shifting and load-bearing implants for dynamic tissue restoration and to introduce a revolutionary paradigm in how actuators can be implemented in biomedicine. Science-towards-technology breakthroughs will be demonstrated with new shape-morphing metamaterials, 4D smart metallic actuators, advanced multi-domain optimization tools, and finally proof-of-concept for two potential clinical applications. Technologically, this vision also goes beyond existing paradigms because of the step-by-step actuation mechanisms, enabled through the additive manufacturing of multi-material degradable metallic structures, that are targeted for an order of magnitude improvement compared to the state-of-the-art. A futuristic long-term vision of this breakthrough technology is to dynamically regenerate entire tissues, such as a nose or an ear, and proof-of-concept will be demonstrated for craniosynostosis treatment and skin expansion. This long-term vision can only be achieved through an interdisciplinary approach and will likely have high social and economic impact as well as provide a new line of research for applications of smart metamaterials in medicine and engineering.