small Scale interlocking mechanisms for Strong and Tough mEtamatEriaL
Brittleness limits the design and lifetime of some polymeric, metallic, and almost all ceramic materials in both structural and functional engineering applications, from the design of plane engine turbine blades to the newest soli...
Brittleness limits the design and lifetime of some polymeric, metallic, and almost all ceramic materials in both structural and functional engineering applications, from the design of plane engine turbine blades to the newest solid-state electrolyte in batteries. This brittleness is intrinsically present in material composition that cannot plastically deform and make them sensitive to any defect introduced during their fabrication or usage.
The goal of this project is to produce small Scale interlocking mechanism for Strong and Tough mEtamatEriaL (SSTEEL) that will provide a material independent solution to brittleness. Interlocking mechanisms provide in theory one of the most efficient way to increase toughness by creating crack blocking compressive stresses in response to tensile stresses. Because a brittle material strength is inversely linked to its size, my team and I first objective will be to develop a new process to form interlocking mechanism based on micron-sized elements using a combination of light-based additive manufacturing, shrinking ink design to access sub-printer resolution, and fragmentation. The second objective will be to implement this mechanism at an even smaller scale using rational material selection, solid state chemistry, and colloidal processing to fabricate an interfacial binder for the elements. The fracture process of SSTEEL sample will span several length scales and a specific task will be to use a combination of image correlation and modelling to fully characterise the existing damaging mechanism and inform the improvement of future designs.
These new structures and concepts developed by my group will promote the development of tough structure for today’s and future structural and functional engineering applications by changing any brittle material to become strong, stiff, deformable, and reliable materials.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.