Society is rapidly opening its doors to robots in our daily life with autonomous vehicles, rehabilitation devices and autonomous appliances. These robots will face unexpected changes in their environment, to which they will have t...
Society is rapidly opening its doors to robots in our daily life with autonomous vehicles, rehabilitation devices and autonomous appliances. These robots will face unexpected changes in their environment, to which they will have to react immediately and appropriately. Even though robots exceed largely humans’ precision and speed of computation, they are far from matching humans’ capacity to adapt rapidly to unexpected changes. In the past decades, robotics has made leaps forward in the design of increasingly complex robotic platforms to meet these challenges. In this endeavour, it has benefited from advances in optimization for solving high-dimensional constrained problems and in machine learning (ML) to analyse vast amounts of data. These methods are powerful for planning in slow-paced tasks and when the environment is known. This project addresses a growing need for methods that show fast and on-line reactivity.
We design controllers that can plan at run time and adapt to new environmental constraints. We offer a novel approach to robot learning that follows stages of skill acquisition in humans. To inform modelling, we conduct a longitudinal study of the acquisition of dexterous bimanual skills in craftsmanship. We study how humans exploit task uncertainty to overcome their sensory-motor noise, and how humans learn bimanual synergies to reduce the control variables. This study informs the design of novel learning strategies for robots that exploit failures as much as successes. We combine planning and ML to learn feasible control laws, retrievable at run time with no need for further optimization. We exploit properties of dynamical systems (DS), which have received little attention in robot control, and use ML to identify characteristics of DS, in ways that were not explored to date. The approach is assessed in live demonstrations of coordinated adaptation of a multi-arm/hand robotic system engaged in a fast-paced industrial task, in the presence of humans.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.