Sizes Matter: The Dust Size Distribution during Planet Formation
Planets form in discs of gas and dust around young stars. Within these discs, micron-sized dust particles need to clump together to grow 14 orders of magnitude to form Earth-like planets as well as the cores of giant planets. It i...
Planets form in discs of gas and dust around young stars. Within these discs, micron-sized dust particles need to clump together to grow 14 orders of magnitude to form Earth-like planets as well as the cores of giant planets. It is a major challenge to understand dust growth from start to finish. State of the art observations provide spectacular glimpses of the dust distribution at a limited range of sizes: ALMA produces images of the thermal emission of mm-sized dust, while instruments such as SPHERE probe the distribution of much smaller particles. However, for a comprehensive theory of planet formation, we need to understand the process from start to finish, from micron-sized to planet-sized. This is therefore the story of the dust size distribution: how many dust specks, pebbles and boulders are present? While there are large size ranges that are out of reach observationally, in this project we will exploit the fact that all dust sizes are coupled to the gas via friction to take a panoptic view of the size distribution for the first time. Since the gas feels friction from all dust sizes, the size distribution is encoded in the gas kinematics, and therefore in every single dust size as well. We will perform hydrodynamical simulations including the full dust size distribution to write the polydisperse story of planet formation. We aim to reconstruct the full size distribution from sparse observations, thereby avoiding the need for expensize multi-wavelength observations. We will compare dust and gas distributions with observations of protoplanetary discs as well as the composition of Solar system bodies. We will use a novel numerical method that allows us to perform these computationally expensive simulations, and employ machine learning to speed up the calculations. This way, we will for the first time be able to build up a complete picture of how dust particles grow into planets and construct a comprehensive model of planet formation.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.