Single-Chip Integration of MEMS Micropumps with Optical Waveguides for Laser Abs...
Single-Chip Integration of MEMS Micropumps with Optical Waveguides for Laser Absorption Spectroscopy
Microbiological research is concerned with studies of microbial gas consumption and production, which is tightly linked to natural greenhouse gas emissions, but also sinks. Currently, such studies require large and expensive instr...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MultiLab
Multi-modal, configurable optical lab-on-chip platform for l...
5M€
Cerrado
TEC2017-88635-R
PLATAFORMAS CMOS-MEMS DE BAJO COSTE PARA APLICACIONES DE BIO...
230K€
Cerrado
RSENSE
Revolutionizing disease and environmental detection with por...
3M€
Cerrado
BIOCARDE
Biosensing and surface characterization using a Cavity Ring...
192K€
Cerrado
MOSTAPDE
MOde localized mass Sensors with Thermal Actuation and Piezo...
178K€
Cerrado
Información proyecto VacLAS-Chip
Duración del proyecto: 43 meses
Fecha Inicio: 2022-08-10
Fecha Fin: 2026-03-31
Líder del proyecto
NORSK POLARINSTITUTT
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
284K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Microbiological research is concerned with studies of microbial gas consumption and production, which is tightly linked to natural greenhouse gas emissions, but also sinks. Currently, such studies require large and expensive instrumentation like gas chromatography systems, which also sacrifice the sample during each measurement. This affects the conditions of the sample, and yields unsatisfactory temporal resolution due to the need for sample handling. In this project, I propose to leverage the latest advances in MEMS and nanophotonics to develop the first chip platform integrating optical waveguides with micropumps, which will facilitate tuneable diode laser absorption spectroscopy (TDLAS) under vacuum and in closed valume without sacrificing the sample gas. With the addition of lasers and light detectors, it will enable inexpensive, low weight, portable devices for real-time, in situ trace gas detection. Such device will not only impact microbiological research, but also sensor networks much needed e.g., in cities for controlling the air quality.