Single-cell sequencing analysis of striatal gene regulatory networks in Parkinso...
Single-cell sequencing analysis of striatal gene regulatory networks in Parkinson's disease
Parkinson’s disease (PD) is the fastest growing Neurodegenerative disorder, currently affecting an estimate of 7 to 10 million people worldwide. The disease is characterized by the loss of dopaminergic neurons in the substantia ni...
Parkinson’s disease (PD) is the fastest growing Neurodegenerative disorder, currently affecting an estimate of 7 to 10 million people worldwide. The disease is characterized by the loss of dopaminergic neurons in the substantia nigra and the accumulation of protein aggregates in the remaining ones. The loss of these cells leads to a dopamine deficit in the striatum which causes the motor symptoms characteristic of PD and the general malfunction of the neuronal circuitry in the basal ganglia. The existing treatment for PD is dopamine replacement therapy with levodopa. This drug alleviates the motor symptoms but has a number of side effects, loses efficacy with time and does not address the cognitive decline caused by PD. In order to gain a better understanding of the disease and open new paths towards an effective treatment, the PARKSEQ project will use the latest advanced in single-cell RNA sequencing and in situ hybridization to determine which cell-type specific gene regulatory networks (GRNs) are affected by PD in the striatum. To this end, I will use single-cell RNA sequencing (scRNA-seq) to study post-mortem human striatum samples from PD and control subjects, under the supervision and guidance of Ana Muñoz, a leading expert in PD and scRNA-seq studies. I will draw from my experience in Bioinformatics and in single cell data analysis to determine the cell types and subtypes existing in the human striatum. On each subtype, I will establish which genes are differentially expressed and, considering their co-expression, I will formulate putative altered GRNs. Then, during a secondment period, I will join Mats Nilsson laboratory to validate the scRNA-seq findings using in situ hybridization. Dr. Nilsson has advanced this technique making it possible to use verify the presence of over 100 genes simultaneously on intact tissue slices. This will enable me to verify the PD-induced alterations in the GRNs suggested by the scRNA-seq data.ver más
06-11-2024:
IDAE Cadena de Valor...
Se ha cerrado la línea de ayuda pública: Ayudas a Proyectos para reforzar la Cadena de Valor de equipos necesarios para la transición a una economía de cero emisiones netas
05-11-2024:
Cataluña Gestión For...
Se abre la línea de ayuda pública: Gestión Forestal Sostenible para Inversiones Forestales Productivas para el organismo:
04-11-2024:
Doctorados industria...
Se ha cerrado la línea de ayuda pública: Formación de doctores y doctoras de las universidades del Sistema universitario de Galicia (SUG) en empresas y centros de innovación y tecnología para el organismo:
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.