Single Nanometer Manufacturing for beyond CMOS devices
To extend beyond existing limits in nanodevice fabrication, new and unconventional lithographic technologies are necessary to reach Single Nanometer Manufacturing (SNM) for novel 'Beyond CMOS devices'. Two approaches are considere...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
To extend beyond existing limits in nanodevice fabrication, new and unconventional lithographic technologies are necessary to reach Single Nanometer Manufacturing (SNM) for novel 'Beyond CMOS devices'. Two approaches are considered: scanning probe lithography (SPL) and focused electron beam induced processing (FEBIP). Our project tackles this challenge by employing SPL and FEBIP with novel small molecule resist materials. The goal is to work from slow direct-write methods to high speed step-and-repeat manufacturing by Nano Imprint Lithography (NIL), developing methods for precise generation, placement, metrology and integration of functional features at 3 - 5 nm by direct write and sub-10nm into a NIL-template. The project will first produce a SPL-tool prototype and will then develop and demonstrate an integrated process flow to establish proof-of-concept 'Beyond CMOS devices' employing developments in industrial manufacturing processes (NIL, plasma etching) and new materials (Graphene, MoS2). By the end of the project: (a) SNM technology will be used to demonstrate novel room temperature single electron and quantum effect devices; (b) a SNM technology platform will be demonstrated, showing an integrated process flow, based on SPL prototype tools, electron beam induced processing, and finally pattern transfer at industrial partner sites. An interdisciplinary team (7 Industry and 8 Research/University partners) from experienced scientists will be established to cover specific fields of expertise: chemical synthesis, scanning probe lithography, FEBIP-Litho, sub-3nm design and device fabrication, single nanometer etching, and Step-and-Repeat NIL- and novel alignment system design. The project coordinator is a University with great experience in nanostructuring and European project management where the executive board includes European industry leaders such as IBM, IMEC, EVG, and Oxford Instruments.