Single Molecule Nuclear Magnetic Resonance Microscopy for Complex Spin Systems
Nanotechnology is emerging as a key area to address global challenges in health, energy, environment and information technologies. However, we are still investigating most nanomaterials with bulk techniques, averaging over large s...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
Nano-MRI
QUARTERNARY STRUCTURE IMAGING WITH NANO MAGNETIC RESONANCE I...
185K€
Cerrado
CSIC13-4E-2076
Renovación del equipo de Resonancia Magnética Nuclear de 500...
648K€
Cerrado
SMEN
Single Molecule Enzymology with ClyA Nanopores
1M€
Cerrado
MAT2008-06126
PROPIEDADES MAGNETICAS DE NANOPARTICULAS DE NUCLEO MULTIPLE...
28K€
Cerrado
UnivSEM
Universal SEM as a multi nano analytical tool
5M€
Cerrado
RAVASI
Rapid Nanofluidics Valves for Single-Molecule Imaging
166K€
Cerrado
Información proyecto 4D-NMR
Duración del proyecto: 38 meses
Fecha Inicio: 2023-01-10
Fecha Fin: 2026-03-31
Líder del proyecto
UNIVERSITAT LINZ
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
3M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Nanotechnology is emerging as a key area to address global challenges in health, energy, environment and information technologies. However, we are still investigating most nanomaterials with bulk techniques, averaging over large samples, instead of looking at one single nanostructure with true nanoscale sensors. Particularly, Nuclear Magnetic Resonance (NMR) as our workhorse for bio/chemical synthesis and medical imaging is inherently limited to bulk samples. The most fundamental challenge, to turn NMR from an ensemble-measurement technique (Commercial NMRs typically have a sensitivity of billions of molecules) into a nanocale technique remains unsolved. In this project we will overcome this challenge by reaching single molecule sensitivity, thus converting NMR into an imaging technique thanks to the exploitation of the unparalleled atomic resolution of the scanning probe microscopy (SPM) technology. This breakthrough will be based on resonant, high frequency, electro-magnetic excitation and readout including important advances in GHz technology. We will use the capabilities of the novel technology to demonstrate detection of single spin NMR and to test the limits of our understanding of nuclear-electron interactions, probing the physics of molecular nanoobjects, 1D carbon nanoribbons with delocalized coherent states, and 2D atomically-thin magnetic materials. This novel technology will not only open up new fundamental scientific insights but should also have a strong impact in the markets of NMR and SPM. In this context, the project will be a keystone, demonstrating the novel platform conceived as a versatile upgrade for commercially-available SPMs, that can routinely operate in various environments (vacuum, ambient, liquid) with a variety of molecules and materials.