SIngle Molecule DEtection and Quantification SIMDEQ A new platform for geneti...
SIngle Molecule DEtection and Quantification SIMDEQ A new platform for genetic and epigenetic analysis
The purpose of the proposed project is to investigate the commercialisation potential of an innovative technology that has been developed in my lab with ERC funding. For over 15 years, our laboratory at the Ecole Normale Supérieu...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto SIMDEQ
Duración del proyecto: 18 meses
Fecha Inicio: 2014-10-23
Fecha Fin: 2016-04-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The purpose of the proposed project is to investigate the commercialisation potential of an innovative technology that has been developed in my lab with ERC funding. For over 15 years, our laboratory at the Ecole Normale Supérieure of the Centre Nationale de la Recherche Scientifique (CNRS) has been developing an instrument called a ‘magnetic trap’. Initially developed in order to study the mechanisms of DNA replication and repair, we have discovered in the past few years that this instrument can also be used to extract both genetic and epigenetic information from single molecules of DNA. The highly novel approach we have developed is called SIMDEQTM (short for ‘SIngle-molecule Magnetic DEtection and Quantification’). We have shown that it can be used to rapidly identify, map, quantify, and fully sequence DNA fragments present in a genetic sample. In addition, a unique feature of the technology is that it can detect and locate the naturally-occurring biochemical modifications to DNA’s four bases (e.g. methylation). There is substantial commercial interest in reading these ‘epigenetic’ modifications as they are important in areas such as developmental biology, cancer, and microbial virulence.
The SIMDEQTM approach to genetic analysis is simple, elegant, and combines the DNA mapping and sequencing abilities of current instruments with the revolutionary ability to directly detect a wide range of DNA modifications at single base resolution. We believe SIMDEQTM could be a disruptive technology across a wide range of research and diagnostics sectors, but recognize that this is a dynamic field with many competitors and specialized niches. We therefore hope to investigate the market potential of this technology and identify the most promising applications through the work described in this proposal.