Single Exciton Transistor based on van der Waals Heterostructures
The spin degree of freedom of an electron captures the essence of quantum mechanics. Via a phenomenon called Coulomb blockade, electrons can be loaded one-by-one into a microscopic device, and their spin can be probed by electrica...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MaPWave
Designing Many-Particle Wavefunctions in Mesoscopic Quantum...
231K€
Cerrado
PCSV
Point contacts for quantum spin valleytronics PCSV
176K€
Cerrado
COHEGRAPH
Electron quantum optics in Graphene
2M€
Cerrado
2D-QuEST
Chemical Structure Photo Physics and Emission Control of Si...
225K€
Cerrado
FERMIcQED
Manipulating single fermions with light in cQED architecture...
1M€
Cerrado
TuneInt2Quantum
Tunable Interactions in 2-dimensional Materials for Quantum...
3M€
Cerrado
Información proyecto SingExTr
Duración del proyecto: 24 meses
Fecha Inicio: 2021-02-23
Fecha Fin: 2023-02-28
Líder del proyecto
HERIOTWATT UNIVERSITY
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
213K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The spin degree of freedom of an electron captures the essence of quantum mechanics. Via a phenomenon called Coulomb blockade, electrons can be loaded one-by-one into a microscopic device, and their spin can be probed by electrical or optical readouts, satisfying some criteria to construct a quantum processor.
Unfortunately, electrons interact indirectly with light (photons), essential for ultra-fast coherent control and to communicate the quantum information over long distances. Conversely, an exciton – a quasiparticle consisting of a strongly bound electron-hole pair in a semiconductor – interacts with light very strongly. With the emergence of atomically thin semiconductors which have exciton binding energies and Coulomb interactions ~ 100x larger than traditional semiconductors such as GaAs, it is possible to engineer a single exciton transistor. In this fellowship, I propose to pursue excitonic transport and controlled electrostatic trapping of single excitons. To realize such devices, I will stack atom-thick flakes together to form 2D heterostructures which allow separation of the electron and hole into different layers, creating an interlayer exciton which has a long lifetime, a large permanent dipole, and convenient energy scales. The interlayer excitons can strongly interact with each other, providing the repulsion energy to realize excitonic Coulomb blockade. Success in this endeavor opens a path to realizing novel sources of single photons, entangled photons, and efficient spin-photon interfaces.
This Fellowship will offer me the opportunity to acquire new skills regarding magneto-optical spectroscopy, quantum optics, transport device design and fabrication. It builds on my PhD project, where I focused on intralayer excitons in 2D materials and heterostructure fabrication. This project exploits my strong background in material/device preparation and marries it with quantum optics, which is the expertise of host group.