Single electron detection in Transmission Electron Microscopy
The ultimate goal of device miniaturization is to rely on a single charge provided by a single dopant atom: solotronics.
Currently the gate length in a transistor cannot be reduced beyond 10-12 nm, as variability between nominally...
The ultimate goal of device miniaturization is to rely on a single charge provided by a single dopant atom: solotronics.
Currently the gate length in a transistor cannot be reduced beyond 10-12 nm, as variability between nominally identical
devices reaches unacceptable levels. Elaborate quantum transport experiments can monitor the presence and spin state of
a single charge, but do not provide information about location and distribution (wavefunction) of the charge or the local
chemical and crystallographic environment. The latter, however, determine why the charge is present at a specific location
with a particular distribution. Scanning probe techniques can measure charges but are restricted to the near surface region.
In contrast, the phase of an electron in transmission electron microscopy (TEM) can probe the sample volume and is
sensitive to charge. The target of the e-See project is the first real time observation of the wavefunction associated to a
single electron charge in the volume of a device with atomic resolution. I aim to implement low temperature quantum
transport experiments in a TEM to allow simultaneous electrical manipulation of this charge. Combined visualization and
manipulation of a single charge trapped by Coulomb blockade in a transistor will (i) identify the origins of device variability,
and (ii) show how the local properties of the sample affect localization of a single charge and its wavefunction. The project
impact involves understanding of variability, improving device design and creation of a new research field on low
temperature electrical in situ TEM experiments. It will provide the tool to visualize a single charge wavefunction in any
device, enabling ultimate device engineering: deterministic 3D atomic scale control of the position of charge localization. To
this end, I will use electron holography and scanning TEM, develop a low temperature electrical TEM sample holder, and
novel sample preparation.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.