Simulations of CrOr and fan broadband NoisE with reduced order modelling
The prediction of Open Rotor and UHBR Fan broadband noise on realistic configurations is still an open challenge. The two major sources of broadband noise are the trailing edge noise and the wake interaction noise. The first sourc...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
AMICAL
Advanced Modeling CapabiLities For UHBR Low Noise Fan Techno...
2M€
Cerrado
JERONIMO
JEt noise of high bypass RatiO eNgine Installation advance...
7M€
Cerrado
ENITEP
Experimental and Numerical Investigation of Turbulent Bounda...
750K€
Cerrado
CRORTET
Experimental characterization of turbulent pressure fluctuat...
461K€
Cerrado
FLOCON
Adaptive and Passive Flow Control for Fan Broadband Noise Re...
5M€
Cerrado
CIRRUS
Core noIse Reduction foR Uhbr engineS
4M€
Cerrado
Información proyecto SCONE
Duración del proyecto: 43 meses
Fecha Inicio: 2017-05-23
Fecha Fin: 2020-12-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The prediction of Open Rotor and UHBR Fan broadband noise on realistic configurations is still an open challenge. The two major sources of broadband noise are the trailing edge noise and the wake interaction noise. The first source is related to a strong vortex shedding at the blade trailing edge and the second to the interaction of the front blades wake turbulence with the rear blades leading edge. Up to now, semi-analytic models used in the industry for the prediction of the broadband noise of these two sources are based essentially on turbulence statistics from steady low-resolution simulations which yield to inaccurate results. The SCONE project proposes to improve the Open Rotor and UHBR Fan broadband noise prediction by using high-fidelity Large-Eddy Simulation (LES). The turbulence statistics obtained with this high-fidelity approach will allow to directly compute the noise but also to provide enhanced inputs to improve semi-empirical models. In order to reduce the cost of LES simulations, optimized numerical methods will be developed. Therefore, the SCONE project deals with three objectives: to build improved turbulence statistics data to feed the semi-analytic models by the use of high fidelity CFD methods, to provide validated high-fidelity methods for direct broadband noise computation and to improve existing semi-analytic models. This project will contribute to the development of ‘quiet’ CROR and UHBR engines.