The proposal focuses on computer assisted decision making for Health Service crisis managers; it will aim at improving decision-making capabilities through an integrated suite of modelling and analysis tools providing insights int...
ver más
31/08/2010
Líder desconocido
4M€
Presupuesto del proyecto: 4M€
Líder del proyecto
Líder desconocido
Fecha límite participación
Sin fecha límite de participación.
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto SICMA
Líder del proyecto
Líder desconocido
Presupuesto del proyecto
4M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The proposal focuses on computer assisted decision making for Health Service crisis managers; it will aim at improving decision-making capabilities through an integrated suite of modelling and analysis tools providing insights into the collective behaviour of the whole organisation in response to crisis scenarios. Decision Support has to be provided in the following phases: - preparation: assisting in the identification of the best way to employ available assets, the limits of the achievable response and the effectiveness of different inter/intra-services cooperation procedures - implementation: providing a forecast of scenario evolution, proposing doctrine-based solutions and evaluating the effects of alternative decisions - debriefing: evaluating the effectiveness of current doctrine/procedures, proposing and evaluating possible modifications for enhancing the overall efficiency of the organisation. To achieve these objectives some scientific and technological issues must be tackled: - developing an integration infrastructure allowing for efficient integration of simulation models/supporting-tools developed or provided by different organisations - improving existing human behaviour models to represent individuals and groups as realistically as possible - considering the effects of unpredictable factors to present the user with a distribution of the effectiveness of a certain decision rather than the effectiveness of that solution deterministically dependant on the preconceived scenario The combined effects of the: - bottom-up modelling approach (i.e. build independent model components and then combine them) - unpredictable factors modelling (e.g. human behaviour) - analysis of decision-effectiveness distribution has the advantage of documenting both the unexpected bad and good things in the organization(s) thus leading to better responses, fewer unintended consequences and greater consensus on important decisions.