Innovating Works

Si-DRIVE

Financiado
Silicon Alloying Anodes for High Energy Density Batteries comprising Lithium Ric...
Silicon Alloying Anodes for High Energy Density Batteries comprising Lithium Rich Cathodes and Safe Ionic Liquid based Electrolytes for Enhanced High VoltagE Performance. Si-DRIVE will develop the next generation of rechargeable Li-ion batteries, allowing for cost competitive mass market EVs by transformative materials and cell chemistry innovations, delivering enhanced safety with superior energy... Si-DRIVE will develop the next generation of rechargeable Li-ion batteries, allowing for cost competitive mass market EVs by transformative materials and cell chemistry innovations, delivering enhanced safety with superior energy density, cycle life and fast charging capability using sustainable and recyclable components.The technology encompasses amorphous Si coated onto a conductive copper silicide network as the anode with polymer/ionic liquid electrolytes and Li-rich high voltage (Co-free) cathodes via processes that are scalable and demonstrably manufacturable within Europe.The components have been demonstrated at TRL3 through preliminary lab-scale analysis, with a clear component improvement strategy to arrive at a TRL5 prototype demonstration by the end of Si-DRIVE. Comprehensive theoretical and experimental studies will probe and control interfacial processes that have heretofore limited Li-ion technologies to incremental gains, guiding materials design and eliminating capacity fade mechanisms.The Si-DRIVE technology will exceed the stringent demands of EV batteries where safety is paramount, by dramatically improving each component within the accepted Li-ion platform and achieving this in a market competitive process with whole of life considerations. The technology will also demonstrate suitability for 2nd life applications at reduced energy density beyond the primary EV lifetime, prior to cost effective materials recycling, consistent with a circular economy.The Si-DRIVE consortium boasts the required academic and industrial partner expertise to deliver this technology and spans material design and synthesis, electrochemical testing, prototype formation and production method validation, life cycle assessment and recycling process development. ver más
31/07/2023
8M€
Duración del proyecto: 55 meses Fecha Inicio: 2018-12-12
Fecha Fin: 2023-07-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2023-07-31
Presupuesto El presupuesto total del proyecto asciende a 8M€
Líder del proyecto
UNIVERSITY OF LIMERICK No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5