Signals from the Surface Snow Post Depositional Processes Controlling the Ice C...
Signals from the Surface Snow Post Depositional Processes Controlling the Ice Core Isotopic Fingerprint
For the past 50 years, our use of ice core records as climate archives has relied on the fundamental assumption that the isotopic composition of precipitation deposited on the ice sheet surface determines the ice core water isotop...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
COMBINISO
Quantitative picture of interactions between climate hydrol...
2M€
Cerrado
OXYPRO
Global biological productivity during abrupt climate change
219K€
Cerrado
ICE&LASERS
Innovative Concepts for Extracting climate and atmospheric c...
3M€
Cerrado
Clumped Isotopes
Reconstructing atmospheric oxidation processes in the past w...
178K€
Cerrado
IMAGICS
Isotope iMAGing for Ice Core Science
Cerrado
AWACA
Atmospheric WAter Cycle over Antarctica Past Present and F...
14M€
Cerrado
Información proyecto SNOWISO
Duración del proyecto: 81 meses
Fecha Inicio: 2017-09-07
Fecha Fin: 2024-06-30
Líder del proyecto
HOGSKULEN PA VESTLANDET
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
For the past 50 years, our use of ice core records as climate archives has relied on the fundamental assumption that the isotopic composition of precipitation deposited on the ice sheet surface determines the ice core water isotopic composition. Since the isotopic composition in precipitation is assumed to be governed by the state of the climate this has made ice core isotope records one of the most important proxies for reconstructing the past climate.
New simultaneous measurements of snow and water vapor isotopes have shown that the surface snow exchanges with the atmospheric water vapor isotope signal, altering the deposited precipitation isotope signal. This severely questions the standard paradigm for interpreting the ice core proxy record and gives rise to the hypothesis that the isotope record from an ice core is determined by a combination of the atmospheric water vapor isotope signal and the precipitation isotope signal.
The SNOWISO project will verify this new hypothesis by combining laboratory and field experiments with in-situ observations of snow and water vapor isotopes in Greenland and Antarctica. This will enable me to quantify and parameterize the snow-air isotope exchange and post-depositional processes. I will implement these results into an isotope-enabled Regional Climate Model with a snowpack module and benchmarked against in-situ observations. Using the coupled snow-atmosphere isotope model I will establish the isotopic shift due to post-depositional processes under different climate conditions. This will facilitate the use of the full suite of water isotopes to infer past changes in the climate system, specifically changes in ocean sea surface temperature and relative humidity.
By establishing how the water isotope signal is recorded in the snow, the SNOWISO project will build the foundation for future integration of isotope-enabled General Circulation Models with ice core records; this opens a new frontier in climate reconstruction.