Shaping the future – From spermatids to spermatozoa
Sperm are highly specialised cells whose structure is optimised for a defined function. Although the distinctive sperm ultrastructure has been known for many years thanks to electron microscopy, an understanding of the molecular d...
ver más
30/09/2028
UU
2M€
Presupuesto del proyecto: 2M€
Líder del proyecto
UNIVERSITEIT UTRECHT
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Fecha límite participación
Sin fecha límite de participación.
Financiación
concedida
El organismo HORIZON EUROPE notifico la concesión del proyecto
el día 2023-04-03
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto GettingInShape
Duración del proyecto: 65 meses
Fecha Inicio: 2023-04-03
Fecha Fin: 2028-09-30
Líder del proyecto
UNIVERSITEIT UTRECHT
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Sperm are highly specialised cells whose structure is optimised for a defined function. Although the distinctive sperm ultrastructure has been known for many years thanks to electron microscopy, an understanding of the molecular details of sperm specialisation is severely lagging. The gap in our molecular understanding relates to the difficulties in genetically manipulating sperm.
Over the past five years, my lab has pioneered the use of cryo-electron tomography to study mature mammalian sperm at the molecular level. We developed workflows based on cryo-focused ion beam milling and sub-tomogram averaging that allowed us to provide the first in-cell structures of mammalian sperm flagella, revealing unique microtubule inner proteins. We further showed that the sperm centrioles and their surrounding matrix form a dynamic basal complex that facilitates a cascade of internal sliding, coupling tail beating with asymmetric head kinking. Although these findings contribute profoundly to the field, the resolution achieved in these studies (~20Å) precluded protein identification in most cases.
Now I plan to develop a workflow based on single particle analysis, achieving near-atomic resolution, but without purification. I will apply this workflow, together with biochemical assays and cellular cryo-electron tomography, to humans and other species to resolve how germ cells get into shape and acquire motility. Specifically, the mechanisms underlining 1) nuclear shaping 2) centriole remodelling 3) mitochondrial sheath assembly 4) motor apparatus activation.
Understanding how male germ cells get into shape is of clinical relevance, as sperm morphological defects are often observed in infertility. Moreover, the success rate of assisted reproduction technologies can be improved with better diagnosis and we expect that the new proteins we identify will help this process. Conversely, understanding the acquisition of motility could potentially be used to develop a male contraceptive.