By 2050, it is estimated that the human population will reach 9 billion. To feed this growing population, it will be necessary to at least double agricultural yields, without increasing the amount of arable land.
Understanding th...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto SexSeed
Duración del proyecto: 52 meses
Fecha Inicio: 2015-10-14
Fecha Fin: 2020-02-29
Líder del proyecto
UNIVERSIDADE DO PORTO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
752K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
By 2050, it is estimated that the human population will reach 9 billion. To feed this growing population, it will be necessary to at least double agricultural yields, without increasing the amount of arable land.
Understanding the factors that regulate sexual reproduction will enable this critical aspect of agricultural production to be engineered for increased productivity, without increasing arable land. Our project will provide new insights into the network controlled by SEEDSTICK (STK), a MADS box transcription factor, which is the master regulator in the production of seeds. The objective of this proposal is to strengthen research partnerships through staff exchanges and networking activities, at international and intercontinental levels. By combining transcriptomic and genetic approaches, we aim to uncover new functions for STK targets and implicate them in putative signalling cascades, increasing our knowledge on the network that controls seed formation in Arabidopsis. Arabidopsis is an excellent model to study seed formation, as it shares a conserved developmental program with major seed-producing crop plants, important to improve not only gross agricultural productivity, but also the composition of seeds and hence the production of components used for high added-value seed-derived products. The growing importance of seeds and seed-derived products to humanity and the central role of STK in seed development means that this project has great potential to contribute to Europe’s excellence and competitiveness in the world.
Detailed analysis of the network of regulatory genes controlling reproductive development in Arabidopsis represents the biological theme around which our training programme will be built. By taking advantage of the scientific competences developed by the partners, it will be possible to expand our knowledge of seed formation in the model species and then to transfer this knowledge horizontally into vital agricultural crop species.