Sensors Towards Advanced Monitoring and Control of Gas Turbine Engines
The headline objective of this project is to develop a suite of advanced sensors, instrumentation and related systems in order to contribute to the development of the next generation of green and efficient gas turbine engines (AAT...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
COTSTEM
Ceramic Optical Temperature Sensor for Turbine Engine Measur...
761K€
Cerrado
COPA-GT
Coupled Parallel Simulation of Gas Turbines
4M€
Cerrado
ACOULOMODE
Advanced coupling of low order combustor simulations with th...
1M€
Cerrado
ACHIEVE
Advanced mechatronics devices for a novel turboprop Electric...
901K€
Cerrado
LeVeR
Lean Burn Control System Verification Rig
964K€
Cerrado
Información proyecto STARGATE
Líder del proyecto
MEGGITT UK LIMITED
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
8M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The headline objective of this project is to develop a suite of advanced sensors, instrumentation and related systems in order to contribute to the development of the next generation of green and efficient gas turbine engines (AAT.2012.1.1-3&4).
Sensors are a vital enabling technology for gas turbines and are critical to validation of design tools, new products, engine control, and health monitoring. The limitations of sensors in terms of survival temperature, accuracy, stability, and degradation limit where measurements are made during development and the operating ceiling of the gas turbine. Engines are run with safety margin in order to safeguard components against mechanical failure. Consequently, they are not run at their most optimal, which impacts overall efficiency. For example, a 10C uncertainty on turbine entry temperature changes the specific fuel consumption by 0.2%. Also a 0.2mm change in turbine tip clearance changes the specific fuel consumption by 0.4%. It is believed that with better sensing techniques, in excess of 500,000 tonnes of kerosene could be saved per annum, which equates to a CO2 saving of over 1.5 millions tonnes. Despite some successes in recent research, it has become clear that the capability gaps are not closing quickly enough. Further research in to sensors and instrumentation is, therefore, absolutely essential if the capability gaps are to be filled at an adequate rate.
The STARGATE project intends to target these critical gaps and create the biggest impact possible within the constraints of the Call budget. The project will develop a range of advanced new sensors for high temperature gas path, surface, and structural measurements. The project also contains some detailed studies on wireless sensing. The sensors will be validated using both laboratory and rig trials to define their performance against specific targets. The project is being lead by Meggitt UK and includes 5 of the EU’s foremost gas turbine manufacturers.