Semiconductor free biophotoelectrodes for solar fuel production
The soaring demand for energy and use of fossil fuels has resulted in the release of vast amount of greenhouse gases and climate change. Developing photoelectrochemical devices for solar fuel production is one of the strategies to...
ver más
Descripción del proyecto
The soaring demand for energy and use of fossil fuels has resulted in the release of vast amount of greenhouse gases and climate change. Developing photoelectrochemical devices for solar fuel production is one of the strategies to address these issues. The use of photosynthetic proteins as photoactive components could potentially generate highly efficient biophotoelectrodes built exclusively from earth-abundant elements, leading to a step change in sustainable solar fuel production. The extreme electron transfer rates, quantum efficiency and large charge separation of the photosynthetic protein complex photosystem 1 delivers the high energy electrons needed for CO2 fixation or H2 evolution in Nature. However, coupling electron transfer between electrodes and photosystem 1 to catalytic processes remains challenging because charge recombination of the reduced electron acceptors with the oxidized form of the electron mediators or with the electrode surface is typically faster than catalysis. The overarching aim of SUPERSET is to demonstrate for the first time the concepts of kinetic barriers and fast hole refilling through electron hopping for preventing charge recombination in scalable biophotoelectrodes and thus enable CO2 reduction and H2 production with semiconductor-free devices. Toward this aim, my specific research objectives will include: (1) Design electron acceptors based on anthraquinones to limit recombination at the electrode by taking advantage of their PCET square scheme mechanism; (2) Modify the surface of electrode by self-assembled monolayers to build a charger barrier to prevent the charge recombination of the reduced electron acceptors with the electrode; (3) Design Osmium/Cobalt-based electron donors with extremely fast electron transfer to enable the refilling of the hole produced by photosystem 1 before recombination takes place; (4) Combine the electron donor and electron acceptor to be channeled to an enzyme for CO2 reduction or H2 production.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.