Innovating Works

S-FOAM

Financiado
Self-Foldable Origami-Architected Metamaterials
Technological progress and increasingly environmental-related problems call for new cutting-edge design strategies to improve materials’ functionalities. The S-FOAM's challenge is to breakthrough metamaterial design by implanting... Technological progress and increasingly environmental-related problems call for new cutting-edge design strategies to improve materials’ functionalities. The S-FOAM's challenge is to breakthrough metamaterial design by implanting origami/kirigami capabilities within architected cellular structures at different scales, thus bringing metamaterials to unprecedented mechanical performance. The resulting metamaterials will combine multistability, anisotropy, geometrical frustration, control of localized deformation, and ellipticity loss to achieve a new capability: self-foldability and shape-morphing induced by external stimuli. Unlike what happens in currently available origami, the location of the creases is not a priori imposed, but self-guided by ellipticity loss, occurring in the homogenized material, equivalent to the kirigami/origami, and self-controlled by embedding within the microstructure topological point and line defects. This introduces an unexplored field of research in which a material element will become able to mechanically react to actions from the surroundings through a direct change in its shape, thus reaching a configuration that optimizes its stiffness, strength, toughness, and, in a word, its environmental resilience. The research project S-FOAM will develop modelling based on the mechanics of solids and structures, numerical simulations, and experimental tools for the optimal design of origami/kirigami-lattice metamaterials. Applications are envisaged in soft robotics where grippers grasp and manipulate objects without damaging them, and in wearable devices where materials gently adapt to humans’ movements. Moreover, the design principle provided by S-FOAM is of great interest in developing adaptive medical devices and in maximizing solar power intake through flexible PVs integrated into metamaterials capable of changing shape depending on the sun motion. ver más
31/12/2028
2M€
Duración del proyecto: 59 meses Fecha Inicio: 2024-01-01
Fecha Fin: 2028-12-31

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2024-01-01
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 2M€
Líder del proyecto
UNIVERSITA DEGLI STUDI DI TRENTO No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5