Technological progress and increasingly environmental-related problems call for new cutting-edge design strategies to improve materials’ functionalities. The S-FOAM's challenge is to breakthrough metamaterial design by implanting...
Technological progress and increasingly environmental-related problems call for new cutting-edge design strategies to improve materials’ functionalities. The S-FOAM's challenge is to breakthrough metamaterial design by implanting origami/kirigami capabilities within architected cellular structures at different scales, thus bringing metamaterials to unprecedented mechanical performance. The resulting metamaterials will combine multistability, anisotropy, geometrical frustration, control of localized deformation, and ellipticity loss to achieve a new capability: self-foldability and shape-morphing induced by external stimuli. Unlike what happens in currently available origami, the location of the creases is not a priori imposed, but self-guided by ellipticity loss, occurring in the homogenized material, equivalent to the kirigami/origami, and self-controlled by embedding within the microstructure topological point and line defects. This introduces an unexplored field of research in which a material element will become able to mechanically react to actions from the surroundings through a direct change in its shape, thus reaching a configuration that optimizes its stiffness, strength, toughness, and, in a word, its environmental resilience. The research project S-FOAM will develop modelling based on the mechanics of solids and structures, numerical simulations, and experimental tools for the optimal design of origami/kirigami-lattice metamaterials. Applications are envisaged in soft robotics where grippers grasp and manipulate objects without damaging them, and in wearable devices where materials gently adapt to humans’ movements. Moreover, the design principle provided by S-FOAM is of great interest in developing adaptive medical devices and in maximizing solar power intake through flexible PVs integrated into metamaterials capable of changing shape depending on the sun motion.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.