Self learning Energy Efficient builDings and open Spaces
This project develops a novel Self Learning Energy Efficient builDings and open Spaces (SEEDS) Facility Management system. The system will allow buildings to maintain user comfort whilst minimising energy consumption and CO2 emiss...
ver más
CENTRO ESTUDIOS MATERIALES Y CONTROL DE OBRA
El desarrollo de cualquier actividad relacionada con la gestion, estudios, proyectos, auditorias y direcciones de obras de construcciones in...
TRL
4-5
| 8M€
Fecha límite participación
Sin fecha límite de participación.
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PDC2022-133719-I00
DESARROLLO DE DISPOSITIVOS INTELIGENTES DE MODELADO Y OPTIMI...
138K€
Cerrado
TIN2017-91223-EXP
DEEP LEARNING PARA CONTROL Y EFICIENCIA ENERGETICA EN EDIFIC...
42K€
Cerrado
EnPROVE
Energy consumption prediction with building usage measuremen...
4M€
Cerrado
S4ECoB
Sounds for Energy Control of Buildings
4M€
Cerrado
RemBAP
Remote Building Analytics platform for Utilities to deliver...
71K€
Cerrado
INVENT
Innovative Digital Twins for Advanced Combustion Technologie...
Cerrado
Información proyecto SEEDS
Líder del proyecto
CENTRO ESTUDIOS MATERIALES Y CONTROL DE OBRA
El desarrollo de cualquier actividad relacionada con la gestion, estudios, proyectos, auditorias y direcciones de obras de construcciones in...
TRL
4-5
| 8M€
Presupuesto del proyecto
4M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This project develops a novel Self Learning Energy Efficient builDings and open Spaces (SEEDS) Facility Management system. The system will allow buildings to maintain user comfort whilst minimising energy consumption and CO2 emissions.<br/>SEEDS will develop an open architecture suitable both for retrofitting existing buildings and open spaces and for new building design.<br/>SEEDS will be based on research and scientific advances in wireless sensor technology, machine learning, and Bayesian networks, as well as standard statistical methods to enable the relationships between key variables to be continuously learned, facilitate prediction and enable control.<br/>SEEDS' results will be validated in two pilots at opposite sites of Europe: i) part of a university campus (Stavanger, Norway) including several buildings and open spaces and ii) an office building plus parking area (Madrid, Spain).<br/>The Consortium includes organisations from the building, electronic and ICT and energy sector. The dissemination and active contribution to forums such as ICT4EB will assure the impact of the proposal.<br/>The economical and environmental benefits of the project are: 1) Reduction of energy consumption and costs and CO2 emissions; 2) Reduction of first adjustment and maintenance costs; 3) Maintenance of natural resources and reduction of generated waste.