Selective ethylene oxidation on novel curved model catalysts
Heterogeneous catalysis has made a wide range of highly functionalized materials available to us and therefore is an important contributor to economy and society. Ethylene epoxidation is a keystone process of the chemical industry...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
KIDS
Kinetics and Dynamics at Surfaces
3M€
Cerrado
CTQ2012-30962
DEARROLLO Y ESTUDIO DE NUEVOS CATALIZADORES HOMOGENEOS PARA...
129K€
Cerrado
CTQ2011-23336
DESCRIPCION A NIVEL ATOMICO DE LA CATALISIS: MOLECULAS, SUPE...
192K€
Cerrado
OXALKANES
Development of sustainable selective catalytic oxidation of...
45K€
Cerrado
ORGA-NAUT
Exploring Chemical Reactivity with Organocatalysis
2M€
Cerrado
PID2020-119242RB-I00
PRODUCTOS QUIMICOS DE ALTO VALOR AÑADIDO A PARTIR DE GAS NAT...
132K€
Cerrado
Información proyecto CURVEO
Duración del proyecto: 24 meses
Fecha Inicio: 2022-05-18
Fecha Fin: 2024-05-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Heterogeneous catalysis has made a wide range of highly functionalized materials available to us and therefore is an important contributor to economy and society. Ethylene epoxidation is a keystone process of the chemical industry, because it produces one of the building block chemicals, ethylene oxide, from which a range of high-value chemicals can be manufactured. However, product formation competes with complete combustion to CO2, and the process is nowadays the largest CO2 emitter of the European industry. The reaction mechanisms that lead to either EO or CO2 formation, as well as the role of the catalytic surface, are still not determined.
The project will implement a new approach to study the mechanism of ethylene oxidation under realistic reaction conditions, while making use of surface-sensitive and atomically accurate techniques. We will employ curved single crystals with tuneable surface structures as model catalysts to unveil site-specific reaction pathways for ethylene oxidation under both UHV and reaction conditions. We will explore the formation of different intermediate species, and determine the selectivity of the ethylene oxidation reaction. This approach significantly exceeds the current state-of-the-art, setting a new paradigm for the understanding of catalytic systems. The impact on academic research and industrial applications will be substantial.