Innovating Works

RECALLCO2

Financiado
Selective CO2 Reduction to CO and Alcohols without Platinum or Noble Group Elect...
The electrochemical conversion of CO2 to carbon-based feedstocks represents one of few technological routes capable of replacing fossil fuel derivatives. Despite substantial advancements, however, major challenges impair CO2 elect... The electrochemical conversion of CO2 to carbon-based feedstocks represents one of few technological routes capable of replacing fossil fuel derivatives. Despite substantial advancements, however, major challenges impair CO2 electrolysis from matching its promise. Critically, steady acidification of CO2 electrolyzers during operation currently necessitates the use of iridium-based anodes. This is unacceptable from a cost and resource availability perspective. More fundamentally, while CO2 reduction to CO, formate and ethylene has become highly selective, the production of high-energy density alcohols with high selectivity has been elusive. To overcome these barriers, new scientific approaches are needed. RECALLCO2 will resolve iridium dependencies and non-selective alcohol production in CO2 electrolysis through a combination of novel electrochemical cell design and the development of molecular catalytic architectures which break existing fundamental limitations. On the system design front, I will micro manipulate reagent, ionic and water fluxes to inhibit nickel corrosion pathways which presently necessitate iridium anodes. This will be the first-ever intrinsically stable CO2 electrolyzer capable of using nickel anodes. A second pillar is the conceptualization that strong electronic-coupling of metal complexes to metal electrodes can eliminate redox-controlled reaction pathways on molecular catalysts. This counters decades of work using carbon electrodes as supports. Coupling with a metal electrode will delink electron transfers from a molecular catalyst’s oxidation states, and fundamentally change catalytic behaviour that currently restricts reactions to 2 electrons. Thus, CO2 reduction products such as methanol (6 electrons) and ethanol (12 electrons) will become viable. Utilizing this counterintuitive approach, I will push alcohol synthesis well beyond state-of-the-art selectivity and reaction rates, giving renewed promise for producing these compounds. ver más
30/11/2028
2M€
Duración del proyecto: 60 meses Fecha Inicio: 2023-11-03
Fecha Fin: 2028-11-30

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2023-11-03
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2023-STG: ERC STARTING GRANTS
Cerrada hace 2 años
Presupuesto El presupuesto total del proyecto asciende a 2M€
Líder del proyecto
TECHNISCHE UNIVERSITEIT DELFT No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5