Sediments and Subduction Interface Mechanics from micro scale creep to global p...
Sediments and Subduction Interface Mechanics from micro scale creep to global plate tectonics
This project seeks to test the hypothesis that sediment subduction strongly influences both the short-term (seismic) and long-term (million-year) mechanical behavior of the subduction interface. The underlying basis of this hypoth...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
GLASS
InteGrated Laboratories to investigate the mechanics of ASei...
2M€
Cerrado
RockDeath
Role of fluids in rock deformation and the earthquake cycle
2M€
Cerrado
CGL2010-21751
LOCALIZACION DE LA DEFORMACION EN ROCAS HETEROGENEAS/ANISOTR...
61K€
Cerrado
CGL2017-86487-P
ESTRUCTURA Y PROPIEDADES PETROFISICAS DE LAS ROCAS EN LA BAS...
109K€
Cerrado
SEGMENT
Studying the Effect of Geometrical Features on Megathrust Ea...
176K€
Cerrado
CGL2009-11384
TRANSPRESION Y REPARTO DE LA DEFORMACION EN LA RAMA NORTE DE...
48K€
Cerrado
Información proyecto S-SIM
Duración del proyecto: 60 meses
Fecha Inicio: 2020-10-22
Fecha Fin: 2025-10-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This project seeks to test the hypothesis that sediment subduction strongly influences both the short-term (seismic) and long-term (million-year) mechanical behavior of the subduction interface. The underlying basis of this hypothesis is the possibility that sediments exhibit fundamentally different frictional and viscous properties than subducted mafic oceanic rocks— specifically that sediments are weaker at all conditions along the plate interface. To test this hypothesis, I have split my approach into three complementary and carefully linked tasks, including Task I. Observations from Exhumed rocks, Task II: Rock Deformation Experiments, and Task III: Numerical Modeling. Task I will involve field geological campaigns in three sites representing different conditions of the plate interface, from shallow to deep. Task II will involve three suites of experiments (closely linked to the field sites) aimed at quantifying the rheological properties of mafic rocks at different pressure-temperature conditions. Task III will involve two types of numerical models: 1) seismo-thermo-mechanical modeling aimed at assessing the influence of heterogeneity on seismic slip behaviors, and 2) large-scale mantle convection modeling aimed at quantifying relationships and feedbacks between subduction interface rheology and plate speeds. This research has high potential to impact a number of Earth Science and related disciplines: establishing a lithological control on plate boundary strength, and hence on both subduction seismic behaviours and plate speeds, would establish a fundamental link between plate tectonics, climate, and life on planet Earth.