After ten years from the discovery of the Higgs boson at CERN, which established the Standard Model (SM) of particle physics as the most accurate description of nature at its fundamental level, no direct sign of new physics (NP) b...
After ten years from the discovery of the Higgs boson at CERN, which established the Standard Model (SM) of particle physics as the most accurate description of nature at its fundamental level, no direct sign of new physics (NP) beyond the SM has been observed. In order to make further progress in high-energy physics, it is necessary to improve the precision of theoretical SM predictions and search NP effects indirectly by looking for tiny discrepancies with experimental measurements.
This proposal will make use of a combination of formal and numerical tools, in particular methods of numerical lattice quantum chromodynamics (QCD), to achieve this aim in the context of flavour physics. Two projects are proposed, which have the common goal of improving the precision on theoretical predictions of relevant flavour observables and share the difficulty of being dominated by hadronic effects that require non-perturbative lattice calculations.
In the first project, I will study the leading electromagnetic and strong isospin breaking corrections to kaon semi-leptonic decays, providing a method to extract the relevant decay amplitudes from finite-volume (FV) Euclidean correlation functions evaluated on the lattice and computing analytically their FV dependence. This aims to determine the CKM matrix element Vus with sub-percent precision and hence to test the CKM matrix unitarity predicted by the SM. The goal of the second project is instead to obtain a first non-perturbative estimate of long-distance contributions to the mixing of neutral D mesons, which are dominant but poorly known, thus representing a limiting factor in the study of CP violation and NP effects in this process. This will be done by applying advanced reconstruction techniques to FV lattice spectral functions.
This proposal will have a relevant impact on flavour physics and phenomenology, delivering new conceptual and algorithmic methods which will provide the foundations for future scientific progress.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.