"Oil spills rapidly spread on sea surfaces covering wide areas, assuming different appearances and thicknesses. The faster the actions to detect, stop, and contain the released oil from spreading, the higher the Oil Spill Response...
"Oil spills rapidly spread on sea surfaces covering wide areas, assuming different appearances and thicknesses. The faster the actions to detect, stop, and contain the released oil from spreading, the higher the Oil Spill Response (OSR) success rate. Since, clean-up effectiveness is higher over thicker layers of oil - referred to as actionable oil - detecting these regions is crucial to enhance oil recovery efficiency, thus minimizing environmental and socio-economic impacts. The objective of ""Searching for Oil Spills on Sea Surfaces"" (SOSeas) project is to develop an artificial intelligence-based system to extract relative oil thicknesses by using multifrequency and multiresolution Synthetic Aperture Radars (SAR). Aerial reconnaissance is currently the most common method to estimate the extent, thickness, and volume of oil spills. However, it is subjective, biased and imprecise, demanding well-trained experts to visually estimate the extent of an oil slick and distinguish different oil appearances. Conversely, SAR are key-operational sensors for oil pollution monitoring, offering a synoptic view over affected sites, acquiring images during day and night regardless of weather conditions. The use of SAR data to detect the location and extent of oil pollution, as well as to discriminate it from false alarms has been well-researched. However, oil slicks characterization is under-explored, but a promising, new, and highly innovative research area, owing to the increasing availability of free SAR data, the development of powerful learning algorithms combined with high-performance computing advances. An automatic system well-trained to recognize patterns related to qualitative thickness ranging will indicate the actionable oil regions. These outputs can offer a less subjective and more precise oil pollution assessment than that of visual reconnaissance, improving situational awareness in time to guide trustworthy decision-making during clean-up operations.
"ver más
15-11-2024:
PERTE CHIP IPCEI ME/...
Se ha cerrado la línea de ayuda pública: Ayudas para el impulso de la cadena de valor de la microelectrónica y de los semiconductores (ICV/ME)
15-11-2024:
REDES
En las últimas 48 horas el Organismo REDES ha otorgado 1579 concesiones
15-11-2024:
DGIPYME
En las últimas 48 horas el Organismo DGIPYME ha otorgado 3 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.