Search for mechanisms to control chiral Majorana modes in superconductors
"Quantum mechanics teaches that electrons have a complex wave function, characterized by an amplitude and a phase. As first theorized by Majorana, it is possible in principle for a charge-neutral particle to have a real wave funct...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TROPIC
Gaining leverage with spin liquids and superconductors
2M€
Cerrado
Majorana
Identifying and manipulating the elusive Majorana fermions i...
169K€
Cerrado
CNTQC
Curved nanomembranes for Topological Quantum Computation
2M€
Cerrado
MajoranaTopIn
Majorana Fermions in Topological Insulator Platforms
2M€
Cerrado
FIS2015-63058-CIN
MAJORANA STATES IN CONDENSED MATTER: TOWARDS TOPOLOGICAL QUA...
12K€
Cerrado
FUSIORANA
The fusion and coherence of Majorana bound states
231K€
Cerrado
Información proyecto MajoranasAreReal
Duración del proyecto: 72 meses
Fecha Inicio: 2019-04-16
Fecha Fin: 2025-04-30
Líder del proyecto
UNIVERSITEIT LEIDEN
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
"Quantum mechanics teaches that electrons have a complex wave function, characterized by an amplitude and a phase. As first theorized by Majorana, it is possible in principle for a charge-neutral particle to have a real wave function. Such real fermions, or Majorana fermions, could be robust carriers of quantum information, insensitive to charge noise and other sources of dephasing. With recent experimental developments in topological superconductivity this idea is becoming a reality.
Our objective is to design methods to control the flow of quantum information encoded in ""flying"" qubits based on Majorana fermions propagating unidirectionally (chirally) in the edge modes of a topological superconductor. We aim for tools to control the phase, charge, and fermion parity of the chiral Majorana modes, on both two-dimensional and three-dimensional platforms, to enable the computational applications of entanglement, braiding, and quantum state transfer.
The impact of this project is that it will provide the basic building blocks for the integration of localized and flying Majorana qubits in the architecture of a topological quantum computer. The key high-risk/high-reward deliverable is a method to exploit the chiral motion of flying Majorana qubits to facilitate braiding operations, as a demonstration of non-Abelian exchange statistics."