Innovating Works

VOLARE

Financiado
Scentsitive nature Green leaf volatile perception in plants and insects
Plant leaves can emit large amounts of volatiles into the air. When attacked by insects, the composition of these blends changes markedly. It is well known that these changes affect not only the behavior of insects interacting wit... Plant leaves can emit large amounts of volatiles into the air. When attacked by insects, the composition of these blends changes markedly. It is well known that these changes affect not only the behavior of insects interacting with the plant but also the metabolism of the plant itself as well as its nearby competitors. However, how plants perceive these volatiles and generate a functional response is not known. My research activities have been dedicated to a group of plant volatiles emitted the earliest upon herbivory, the so-called green leaf volatiles (GLVs). I discovered a class of enzymes, present in plants and insects, that profoundly affect ecological interactions by converting the highly abundant GLV Z-3-hexenal into E-2-hexenal (Science 2010, eLife 2013, Frontiers in Plant Science 2017). These two compounds, as well as their derivatives, among which Z-3- and E-2-hexenyl acetate, have distinct effects on the behavior of herbivorous and predacious insects as well as on the metabolism of plants. Here I propose to take my program to the next level by elucidating how plants and insects perceive E-2-hexenal and hexenyl acetates. First I will use a classical mutagenesis screen and a cutting-edge technique called chemical yeast 3-hybrid (Y3H) to identify plant proteins involved in signal processing and especially perception of volatiles. With the newly identified genes in hand I will create non-responsive mutant plants to investigate the role of these key volatiles in the plant's self-recognition and its interactions with herbivorous insects and pathogens. Simultaneously, I will use Y3H to also identify insect proteins that directly interact with either E-2-hexenal or E-2-hexenyl acetate and I will create non-responsive insects using CRISPR-Cas9 and assess how this affects their behavior. This interdisciplinary research project will uncover the perception mechanism of key plant volatile signals and the roles these play in the (eco)physiology of plants and insects. ver más
31/01/2025
UvA
2M€
Duración del proyecto: 74 meses Fecha Inicio: 2018-11-05
Fecha Fin: 2025-01-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2018-11-05
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2018-STG: ERC Starting Grant
Cerrada hace 7 años
Presupuesto El presupuesto total del proyecto asciende a 2M€
Líder del proyecto
UNIVERSITEIT VAN AMSTERDAM No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5