Scattering Media as a Resource Towards Information Processing and Sensing
Scattering of light in complex environments has long been considered a nuisance and an inescapable limitation to imaging and sensing alike, ranging from astronomical observation, biomedical imaging, spectroscopy, etc. In the last...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
Q-MIC
Quantum enhanced on chip interference microscopy
3M€
Cerrado
SQiMic
Structuring Quantum Light for Microscopy
1M€
Cerrado
COMEDIA
Complex Media Investigation with Adaptive Optics
1M€
Cerrado
EUR2022-134051
LASERES DE ONDA CONTINUA DE BANDA ULTRAANCHA
90K€
Cerrado
TWISTS
Twists more the complex shape of light
2M€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Scattering of light in complex environments has long been considered a nuisance and an inescapable limitation to imaging and sensing alike, ranging from astronomical observation, biomedical imaging, spectroscopy, etc. In the last decade, wavefront shaping techniques have revolutionized this view, by allowing light focusing and imaging even deep in the multiple scattering regime. This principle is embodied in the possibility—that I pioneered—to access the transmission matrix of a complex medium.
In SMARTIES, I will go one major conceptual step further, by exploiting directly the inherent property of a complex medium to mix perfectly and deterministically the information carried by the light. This mixing is actually a processing step. Along this general idea, SMARTIES will explore two synergistic directions:
—Classical and quantum optical computing: Thanks to the highly multimode nature and the strong mixing properties of complex material, I will aim at demonstrating high performance classical computing tasks in the context of randomized algorithms. As a platform for quantum information processing, this will be relevant for high dimension quantum computing algorithms, and quantum machine learning.
—Generalized imaging and sensing: Rather than tediously focusing and imaging through a scattering material, computational approaches can significantly improve and simplify the imaging process. I also aim to show that the relevant information can be directly and optimally extracted from the scattered light without imaging, using machine-learning algorithms.
From a methodological standpoint, SMARTIES will require bridging knowledge from mesoscopic physics, light-matter interaction, linear and non-linear optics, with algorithms and signal processing concepts. It will deliver a whole new class of optical methods and devices, based on disorder. Its applications range from big data analysis, quantum technologies, to sensors and deep imaging for biology and neuroscience.