Scaling fluid-driven processes: Building Collapse in Extreme Flow Conditions
Many Earth system processes involving multi-physics, multi-phase conditions extend over several orders of magnitude in length- and time-scales. Engineering science, in pursuit of deeper process understanding and solution-oriented...
ver más
Descripción del proyecto
Many Earth system processes involving multi-physics, multi-phase conditions extend over several orders of magnitude in length- and time-scales. Engineering science, in pursuit of deeper process understanding and solution-oriented design, has used scaling theories to address scale-afflicted, complex processes through experimental work in laboratory environment at reduced scale. The standard scaling approach, the Buckingham π-theorem, is especially deficient when multi-physics and multi-phase processes require the choice of more than a single non-dimensional number, resulting in severe scale effects and typically meaning that accuracies at reduced scale are inadequately quantified. Hence, we choose a demonstrably complex multi-physics, multi-phase process for the investigation of scaling accuracies – the progressive collapsing of residential buildings and the associate debris transport, evolving from extreme flow events from natural hazards, such as flash floods or tsunami.
ANGRYWATERS seeks to achieve a breakthrough in modelling these complex processes by deriving novel scaling laws that will be developed in the framework of the Lie group of point scaling transformations. Scaling requirements will be applied to the combined fluid-structure interaction at various scales, developing sophisticated building specimens; here, we employ 3D-printing and appropriately engineered materials to match the scaling requirements. We conduct a comprehensive experimental campaign, using medium- and large-scale facilities, subjecting the specimens to extreme flow conditions in the form of dam-break waves. We consider sub-assemblages, single and multiple buildings, enhancing the understanding of energy losses and debris production upon collapse, elaborating reduced scale accuracies. High-fidelity numerical modelling will complement our experiments, deepening our process understanding; a depth-averaged model with novel debris advection model crucially enhances predictive capabilities.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.