Scalable processing of highly stable, flexible multi-junction perovskite solar c...
Scalable processing of highly stable, flexible multi-junction perovskite solar cells from green inks
This proposal develops perovskite solar cells (PSCs) as a transformative power conversion technology by addressing critical challenges related to stability and scalability. The key objectives are:
1: Translate a low-toxicity precu...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
APOLO
SmArt Designed Full Printed Flexible RObust Efficient Organi...
5M€
Cerrado
SAMA
Solution processed All perovskite Multi junction Architectur...
225K€
Cerrado
SPRINT
Sputtering Halide Perovskites for Integration in Monolithic...
150K€
Cerrado
PRE2019-091181
CONTROL DE LA RECOMBINACION RADIATIVA EN CELULAS SOLARES FLE...
98K€
Cerrado
PID2019-111774RB-I00
TODOS LOS NANOCRISTALES DE PEROVSKITA DE HALURO INORGANICO P...
97K€
Cerrado
PCI2019-111889-2
CELULAS SOLARES DE PEROVSKITE CON ELECTRODOS DE CARBONO Y UN...
148K€
Cerrado
Información proyecto GreenPeroInk
Duración del proyecto: 39 meses
Fecha Inicio: 2024-04-19
Fecha Fin: 2027-07-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This proposal develops perovskite solar cells (PSCs) as a transformative power conversion technology by addressing critical challenges related to stability and scalability. The key objectives are:
1: Translate a low-toxicity precursor ink and 2D-templated crystallisation method, recently developed by the Applicant, from laboratory-scale to scalable manufacturing processes. Use this method to produce flexible, single-junction PSCs with >20% efficiency, compatible with lightweight Internet of Things applications.
2: Explore 2D-templated fabrication of a range of complex, mixed-ion halide perovskites with bandgaps ranging from 1.2-2.0 eV. Using a combinatorial slot-die coating approach pioneered by the Host group, high-throughput ink and process optimization will be achieved, followed by in-depth investigation and enhancement in compositional stability of the perovskite phases formed. Having optimised single-junction cells of relevant bandgaps, multi-junction devices will be scalably fabricated.
3: Recognizing that degradation in PSCs often occurs at interfaces between the perovskite layer and adjacent materials in the cell, conduct a systematic investigation to understand and mitigate degradation mechanisms in our single- and multi-junction PSCs. Employing luminescence mapping we will first spatially identify interfacial instabilities evolving in PSCs under operational aging. Having identified stability-limiting interfaces, solid-state nuclear magnetic resonance spectroscopy and time-of-flight secondary ion mass spectrometry 3D mapping will allow us to analyse interface degradation at the atomic level, providing mechanistic insights into active degradation pathways. Based on this investigation, a tailored range of stability enhancement strategies will be used to enhance PSC stability.
With these objectives, this proposal will advance commercial implementation of PSC technologies, paving the way for more efficient, cost-effective, secure and renewable energy solutions.