Scalable Control Approximations for Resource Constrained Environments
This project aims at making a breakthrough contribution in optimal control and decision making for nonlinear processes that take place on network structures and are dynamic in time and/or space. The setting has a wide range of pot...
This project aims at making a breakthrough contribution in optimal control and decision making for nonlinear processes that take place on network structures and are dynamic in time and/or space. The setting has a wide range of potential domains of applicability, comprising thermal, electric, or fluid dynamics in energy networks, logistics, disease spreading dynamics, or cell signalling in biomedicine. The project will pursue the following objectives: To contribute new theory, to develop numerical approximation methods, to implement algorithmic methods in software, and to conduct proof-of-concept studies. Research in the young field of mixed-integer optimal control (MIOC) has recently seen increased momentum together with numerical approximation algorithms and control theory. Despite initial successes, key questions remain unsolved because of a lack of analytical understanding, a lack of tractable formulations, the unavailability of efficient solvers or the insufficiency of existing implementations. This project focuses on pivotal but poorly understood topics: decomposition, relaxation, and approximation; domains admitting homogenization and limiting processes using weak topologies; tractable approximations of direct costs of decisions; efficient distributed and parallel nonlinear solvers; and robustness of approximate nonlinear decision policies under uncertainty. These key issues appear systematically in a wide range of control tasks of high societal relevance. By addressing them, the project helps to bridge a persistent and pronounced gap in simulation & optimization practice. Due to non-trivial interactions emerging in theory and the unavailability of comprehensive algorithms, these topics cannot be suitably handled by merely combining the respective states of the art. A focused effort to decisively extend MIOC to optimal decisions for dynamics on networks is therefore a timely endeavour that will help to address the challenging demands of practitioners.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.