Satellite-based change detection and predictive monitoring of infrastructure gri...
Satellite-based change detection and predictive monitoring of infrastructure grids based on high resolution data
LiveEO will offer a holistic monitoring service for infrastructure networks based on satellite data and machine learning algorithms to identify external threats to the grid and predict future impacts by adding time series analytic...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PGC2018-098817-A-I00
ANALISIS MULTIMODAL DE ESCENAS PARA APLICACIONES DE MONITORI...
50K€
Cerrado
SEO-DWARF
Semantic EO Data Web Alert and Retrieval Framework
2M€
Cerrado
TED2021-132702B-C21
ESTRATEGIAS DE MANTENIMIENTO PREDICTIVO BASADAS EN DETECCION...
177K€
Cerrado
PID2019-109026RB-I00
HERRAMIENTAS DE APRENDIZAJE PROFUNDO PARA LA DETECCION DE NU...
150K€
Cerrado
TEC2016-77741-R
APRENDIZAJE ESTADISTICO PARA LA DETECCION DE NUBES EN IMAGEN...
185K€
Cerrado
Información proyecto EOinTime
Duración del proyecto: 18 meses
Fecha Inicio: 2022-09-20
Fecha Fin: 2024-03-31
Líder del proyecto
LIVEEO GMBH
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
LiveEO will offer a holistic monitoring service for infrastructure networks based on satellite data and machine learning algorithms to identify external threats to the grid and predict future impacts by adding time series analytics to our services. The service will enable rapid change
detection (e.g. storm monitoring) to quickly assess the location and extent of damage and slow change detection to facilitate the prediction of potential risks. We will make use of optical and radar data to offer services in real time, regardless of weather. The solution requires the
development of AI-based change detection algorithms that evaluate data at different points in time i.e. time-series and are able to detect patterns and abnormalities in the data with high precision. To do this automatically, the development of an automated process chain, able to transform
data into actionable insights for our customers is part of the solution. Insights will be made available via mobile and web apps.