Particle acceleration and radiation in plasmas has a wide variety of applications, ranging from cancer therapy and lightning initiation, to the improved design of fusion devices for large scale energy production. The goal of this...
Particle acceleration and radiation in plasmas has a wide variety of applications, ranging from cancer therapy and lightning initiation, to the improved design of fusion devices for large scale energy production. The goal of this project is to build a flexible ensemble of theoretical and numerical models that describes the acceleration processes and the resulting fast particle dynamics in two focus areas: magnetic fusion plasmas and laser-produced plasmas. This interdisciplinary approach
is a new way of studying charged particle acceleration. It will lead to a deeper understanding of the complex interactions that characterise fast particle behaviour in plasmas. Plasmas are complex systems, with many kinds of interacting electromagnetic (EM) waves and charged particles. For such a system it is infeasible to build one model which captures both the small scale physics and the large scale phenomena. Therefore we aim to develop several complementary models, in one common framework, and make sure they agree in overlapping regions. The common framework will be built layer-by-layer, using models derived from first principles in a systematic way, with theory closely linked to numerics and validated by experimental observations. The key object of study is the evolution of the velocity-space particle distribution in time and space. The main challenge is the strong coupling between the distribution and the EM-field, which requires models with self-consistent coupling of Maxwell’s equations and kinetic equations. For the latter we will use Vlasov-Fokker-Planck solvers extended with advanced collision operators. Interesting aspects include non-Maxwellian distributions, instabilities, shock-wave formation and avalanches. The resulting theoretical framework and the corresponding code-suite will be a novel instrument for advanced studies of charged particle acceleration. Due to the generality of our approach, the
applicability will reach far beyond the two focus areas.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.