Root microbiome research is motivated by the promise of using growth-promoting, disease-suppressive bacteria as transferable, protective agents in agriculture. Yet, such approaches have not realized their potential as pesticide or...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
PGC2018-096185-B-I00
LA INTERACCION DE MICROMONOSPORA CON SUS HOSPEDADORES VEGETA...
188K€
Cerrado
PID2019-109372GB-I00
BIOFILMS Y COLONIZACION DE PLANTAS POR BACTERIAS BENEFICIOSA...
212K€
Cerrado
LuxSoM
LuxR solos as major proteobacterial players of cell-cell sig...
176K€
Cerrado
PID2020-112634GB-I00
ESTUDIOS SOBRE DEPREDACION BACTERIANA Y SU IMPACTO EN AGRICU...
155K€
Cerrado
TED2021-130783B-C21
FUNCIONALIDAD DEL MICROBIOMA DE SISTEMAS HORTICOLAS EN FASE...
191K€
Cerrado
Información proyecto ROOBABAA
Duración del proyecto: 63 meses
Fecha Inicio: 2021-05-18
Fecha Fin: 2026-08-31
Líder del proyecto
swiss aeropole SA
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
3M€
Descripción del proyecto
Root microbiome research is motivated by the promise of using growth-promoting, disease-suppressive bacteria as transferable, protective agents in agriculture. Yet, such approaches have not realized their potential as pesticide or fertilizer alternatives. Major obstacle are soil physico-chemical complexity and a staggeringly complex biotic environment. Recent establishments of synthetic communities promise to enable mechanistic understanding of bacterial establishment in the rhizosphere. However, current methods crucially lack in spatial and temporal resolution. The root is an assembly of dynamically evolving, distinct micro-niches for bacterial colonization that I propose to characterize by extensive use of fluorescent microbial marker strains, monitoring of bacterial metabolism and tracing of proliferation and taxis. This is complemented by precise manipulations of root development. The fractal, open-growth of roots must result in rapid changes in nutrient composition and cycles of nutrient abundance and restriction, forcing bacteria to oscillate between different survival strategies. These fundamental aspects of micro-niche formation, change and collapse are largely undescribed, yet central to understand success or failure of bacterial colonization. I propose to visualize and dissect these processes by combining cutting-edge tools for visualization, optical and genetic manipulations of both plant and bacteria. Bacterial model systems will be inserted into defined bacterial culture collections and results from mono-associations will be challenged by soil-based gnotobiotic systems and high-resolution community profiling. This project will reveal central, dynamic aspects of bacteria-root interactions within a realistic, time-resolved framework of root development. This knowledge will be crucial for progressing to a mechanistic understanding of root bacteria interaction and the reliable use of bacterial agents in agriculture by predictive design of bacterial niches.