Mitochondria house hundreds of biochemical reactions involved in processes critical for the survival and homeostatic adaptation of the cell. Mitochondria are highly dynamic organelles, which adapt their shape and network depending...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
BFU2010-18903
BIOGENESIS DE LA MITOCONDRIA Y SU DISFUNCION EN PATOLOGIA
363K€
Cerrado
mitoCalcium
Mitochondrial calcium signalling molecules roles and pharm...
2M€
Cerrado
EndoMitTalk
Endolysosomal mitochondria crosstalk in cell and organism ho...
1M€
Cerrado
BES-2017-081098
IMPLICACIONES DE LA DINAMICA MITOCONDRIAL Y LA AUTOFAGIA SOB...
93K€
Cerrado
JDC2023-051269-I
REGULATION OF ORGANISMAL PROTEOSTASIS BY THE MITOCHONDRIAL R...
72K€
Cerrado
PID2020-114499RB-I00
TRANSPORTADORES MITOCONDRIALES REGULADOS POR CALCIO: PAPEL D...
158K€
Cerrado
Información proyecto MITODYN
Duración del proyecto: 27 meses
Fecha Inicio: 2017-03-29
Fecha Fin: 2019-06-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Mitochondria house hundreds of biochemical reactions involved in processes critical for the survival and homeostatic adaptation of the cell. Mitochondria are highly dynamic organelles, which adapt their shape and network depending on the cellular needs. As mitochondria play a central and unique role in metabolism, our understanding of the complex network of interrelations between mitochondria and other organelles has crucially changed our view on the cell biology of mitochondria and a new biology and pathophysiology of this organelle are emerging. Mitochondria are in dynamic contact with the endoplasmic reticulum (ER) and this specialized contact is essential for a number of relevant processes, including mitochondrial dynamics, lipid exchange, calcium homeostasis and apoptosis. The Mitochondrial Calcium Uniporter (MCU) and some of its regulators (MICU1-3, EMRE) have recently been identified as the key complex regulating mitochondrial calcium uptake with some already identified functions. The goal of this project is to define the complete interactome of the Mitochondrial Calcium Uptake Machinery (MCUM) in different physiological conditions and to characterize the functions associated to this complex. To address these goals, an unbiased proteomic analysis will be performed, both in cellulo (human cells) and in vivo (zebrafish), to identify the interactors of the MCUM at steady state and under different cellular stresses using the BioID technic. The mechanisms involving the MCUM in the regulation of mitochondrial dynamics, apoptosis and cell migration will be unravelled using molecular and cell biology experiments coupled with the most recent advances in microscopic analysis. Finally, we will explore the relevance of these findings in the physiopathology associated to mitochondrial diseases using cell lines derived from patients harbouring a MCUM dysfunction.