Robotic Emulation of Human Failure Comprehension for Vastly Enhanced Resilience...
Robotic Emulation of Human Failure Comprehension for Vastly Enhanced Resilience through Metacognition
The aim of the RECOVER.ME project is to achieve human ingenuity in dealing with hardware faults in robotic space exploration. The hypothesis of the project is, that as robots acquire human-like metacognitiveawareness and metacogni...
The aim of the RECOVER.ME project is to achieve human ingenuity in dealing with hardware faults in robotic space exploration. The hypothesis of the project is, that as robots acquire human-like metacognitiveawareness and metacognitive regulatory abilities, they will be enabled to recover from severe but rectifiable hardware malfunction all by themselves. This is of particular importance to planetary exploration, asa hardware fault need not be the end of a mission. However, as of today, once a hardware malfunction occurs, the remote robot is typically taken out of operation and troubleshooting is done manually. In thefuture, especially, when more complex robots are deployed to construct planetary infrastructure for crewed exploration, this can no longer be tolerated. Considering that a hardware fault may occur at any time, sucha situation can become safety-critical for the robot, the established infrastructure, and for astronauts in the vicinity of the robot.To overcome this issue, RECOVER.ME proposes a novel approach for metacognition-enabled failure handling. Instead of relying on hard-coded recovery strategies by specifying how a robot has to react to a certain sub-system fault, the project aims to bootstrap failure handling as a property of the cognitive architecture of the robot itself. Metacognitive awareness is created through a novel knowledge representation that describes how hardware faults may impact robot capabilities. Metacognitive planning will yield contingency configurations employing abstract, affordance-based first order-logic planning for self-programming. To empower robots to monitor their own programming and evaluate the best strategy to react to arbitrary failure cases, generic limitation models will translate sub-symbolic fault information into semantically interpretable knowledge for metacognitive monitoring and metacognitive evaluation. This will provide robots with competent strategies to deal with faults in a similar way to humans.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.