Ribonucleic Acids (RNAs) are crucial polymers in biology: RNAs might be the key to understanding the origins of life and are extremely promising therapeutic tools. Just like proteins, RNAs numerous properties stem from their 3-dim...
ver más
FJCI-2017-34353
Computational Biology of RNA Processing
50K€
Cerrado
BFU2013-47736-P
DETERMINACION ESTRUCTURAL DE GENOMAS Y DOMINIOS GENOMICOS
Cerrado
IJC2020-045506-I
Computer modeling of protein aggregation and function
98K€
Cerrado
PTA2020-019067-I
Modelado computacional de la estructura de proteínas individ...
42K€
Cerrado
MMultiDP
In silico modeling of multi-domain proteins in biological co...
231K€
Cerrado
Últimas noticias
27-11-2024:
Videojuegos y creaci...
Se abre la línea de ayuda pública: Ayudas para la promoción del sector del videojuego, del pódcast y otras formas de creación digital
27-11-2024:
DGIPYME
En las últimas 48 horas el Organismo DGIPYME ha otorgado 1 concesiones
Descripción del proyecto
Ribonucleic Acids (RNAs) are crucial polymers in biology: RNAs might be the key to understanding the origins of life and are extremely promising therapeutic tools. Just like proteins, RNAs numerous properties stem from their 3-dimensional structure, which itself arises from their nucleotide sequence. However, RNA molecules are particularly dynamical, making their structure noticeably difficult to study, both experimentally and theoretically. Moreover, RNA dynamics are critical for biological function.
Recently, deep learning (DL) methods have revolutionised computational biophysics by mastering the task of protein native structure prediction from sequence. Comparable success can be hoped for RNA, but it is impaired by the less abundant data and the lack of direct transferability of current methods. More importantly, no attempt has been made at developing a DL approach to directly predict RNA dynamics.
In this proposal we aim to adapt the emergent framework of diffusion models to the task of one-shot sampling of RNA conformational ensembles. Diffusion models constitute a new paradigm in generative machine learning (ML) that has attained astounding successes in conditional image generation, audio, graph and geometric shape synthesis. Our goal is to produce a neural network-based software which, given an arbitrary input sequence, efficiently samples the 3D coordinates of RNA conformations according to their equilibrium probabilities. To do so we suggest an original approach combining (1) coarse-grained internal coordinates, (2) a diffusion-based generative framework, (3) an attention-based architecture inspired by state-of-the-art DL biomolecular approaches and (4) a mixed training procedure based on experimental fragments and molecular dynamics simulations. Our approach could be used as a replacement to extensive MD simulations which are voracious both in human time and energy expense, hence accelerating biophysical research and decreasing its carbon footprint.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.