RNA biology and neuroglial function: resolving the cellular and subcellular tran...
RNA biology and neuroglial function: resolving the cellular and subcellular transcriptome in myotonic dystrophy brains, towards new brain gene therapy
RNA biology is critical for the molecular orchestration of the interplay between specialized brain cell types, and disrupted RNA processing, can cause human disease. A prime example is Myotonic Dystrophy type 1(DM1), a multisystem...
RNA biology is critical for the molecular orchestration of the interplay between specialized brain cell types, and disrupted RNA processing, can cause human disease. A prime example is Myotonic Dystrophy type 1(DM1), a multisystemic disorder caused by the expansion of a non-coding trinucleotide DNA repeat and that involves cognitive impairment and behavioral changes. Molecular pathogenesis is driven by the nuclear accumulation of RNA foci, which sequester RNA-binding proteins that regulate splicing, polyadenylation and subcellular localization of downstream transcripts. However, we do not know the cell populations, molecular pathways and cell-cell interactions primarily affected in the brain. A critical question to develop effective molecular therapies. My host laboratory developed a unique mouse model of DM1 that mirrors the spatiotemporal expression of toxic RNA and relevant brain phenotypes. Using these mice, I will fill three knowledge gaps:(1) I will employ advanced spatial transcriptomics to unravel the vulnerability of diverse cell types throughout brain development and aging;(2) I will use the TRAP technology to uncover subcellular transcriptomic abnormalities in specialized neuron-astrocyte contacts and identify pivotal disease intermediates of neuroglial miscommunication;(3) I will use my expertise in AAV-mediated brain gene delivery to test the capacity of engineered protein decoys, developed in my host laboratory, to release the RNA-binding proteins sequestered in brain cells and correct the behavioral, molecular neurobiological deficit in DM1 mice. Through the integration of cutting-edge transcriptomics with a new focus on synaptic neuroglial communication, I will elucidate DM1 brain pathogenesis with unprecedented spatiotemporal resolution, and offer a framework to understand other conditions mediated by toxic RNA repeats, for which DM1 serves as a paradigm. Simultaneously, my project will enhance our understanding of RNA biology in the brain.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.