Rhizospheric biofilms at root microbe mineral interfaces A key to improve produ...
Rhizospheric biofilms at root microbe mineral interfaces A key to improve productivity sustainability and CO2 balance in forests
In the past decades, forest productivity was maximized by the use of large quantities of fertilizers and pesticides. These chemicals are produced by complex processes, which consume high levels of energy from fossil fuels and emit...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
AGL2014-55269-R
CAPACIDAD DE LAS ENMIENDAS ORGANICAS PARA CONSTRUIR POOLS DE...
157K€
Cerrado
CGL2017-88734-R
NUEVAS APROXIMACIONES A LA RESTAURACION DE SUELOS EN AMBIENT...
117K€
Cerrado
LOVE-TO-HATE
Pesticides Felicity or curse for the soil microbial communi...
2M€
Cerrado
PID2021-128961OB-I00
USO DEL FITOMANEJO Y LA BIOAUMENTACION EN LA REHABILITACION...
175K€
Cerrado
RYC2021-033370-I
Towards a better understanding of the role of soil bacterial...
236K€
Cerrado
MiCoS
Microplastic contamination in agricultural soil ecosystems a...
1M€
Cerrado
Información proyecto RHIZO
Líder del proyecto
KOBENHAVNS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
218K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
In the past decades, forest productivity was maximized by the use of large quantities of fertilizers and pesticides. These chemicals are produced by complex processes, which consume high levels of energy from fossil fuels and emit large amounts of CO2. The secondary effects of the chemicals include increased ground and surface water pollution and soil degradation in all forested ecosystems in Europe and other parts of the world. Part of the problem is a lack of fundamental understanding about mineral-derived nutrient dynamics in forests, their weathering release, storage and transport in soils and roots to maintain high, but sustainable, production of high quality wood products. If practices could be developed to enhance natural processes for nutrient acquisition and transport, pesticide and fertilizer use could be reduced, energy could be saved, CO2 emission decreased, and environmental sustainability insured. Root-microbe-mineral interactions in the rhizosphere regulate mineral-derived nutrient acquisition and transport to plant roots. I will investigate these interactions to improve understanding of rhizospheric biofilms formed in symbiotic associations. My research sofar shows that these biofilms enhance silicates mineral weathering, sequester atmospheric CO2 in the hydrosphere, and decrease the loss of mineral-derived nutrients to ground and surface water. To expand on this, I will examine the chemical and physical structure of the root-microbe-mineral interface, using stat-of-the-art nano-scale techniques combined with microbiological and biogeochemical approaches under natural and controlled growth conditions. I will also characterize the biofilms under elevated CO2 levels. The science and technology results gained from this project will contribute directly the the scientific community and to the society through improvements in commercial tree production, forest health and sustainability under the increased CO2 levels.