Rhizosphere engineering influence on signaling behavior and colonization under...
Rhizosphere engineering influence on signaling behavior and colonization under drought conditions
Sustainability of climate smart agriculture is dependent on effectiveness of management strategies. Plant-microbe interactions within the rhizosphere are specifically deliberated to achieve the goal of sustainable crop production....
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
AGL2017-85987-C3-1-R
OBTENCION DE VARIEDADES RESISTENTES A ESTRES TERMICO Y SEQUI...
121K€
Cerrado
PID2021-125575OR-C22
MICROORGANISMOS SIMBIOTICOS COMO SOLUCION SOSTENIBLE PARA AF...
123K€
Cerrado
MicroTRIAS
Learning from nature: Microbiome training towards improving...
181K€
Cerrado
BRIO
Banking Rhizosphere Micro Organisms. European Russian init...
560K€
Cerrado
PID2019-104000RB-I00
HOMEOSTASIS IONICA COMO FACTOR CLAVE EN EL DESARROLLO VEGETA...
240K€
Cerrado
Información proyecto RhizoEng
Duración del proyecto: 40 meses
Fecha Inicio: 2021-02-25
Fecha Fin: 2024-07-01
Líder del proyecto
AARHUS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
207K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Sustainability of climate smart agriculture is dependent on effectiveness of management strategies. Plant-microbe interactions within the rhizosphere are specifically deliberated to achieve the goal of sustainable crop production. Researchers on a global scale are making serious efforts over the past few decades and have resulted in significantly increase in our understanding regarding various aspects of plant-microbe interactions under abiotic stress, but gap is yet seen in the current knowledge regarding the factors governing host-microbe bilateral crosstalk within the rhizosphere, which has significantly limited the attempts to expedite the host-microbe signaling under abiotic stress conditions including drought. With this proposal I hypothesise that drought-smart cultivation is possible through rhizosphere engineering and that changes in the colonizing microbial consortia may result in resilient, drought resistant plants. To test my hypothesis, I will unite the disciplines of microbiology, plant science, molecular biology, and molecular ecology to decode the root-signaling behavior, microbial assemblage, and subsequent drought tolerance in wheat. I will achieve this by a) conducting a meticulously designed experiment which will allow identification of differential root-signaling behavior in wheat under drought conditions in the natural soil regime; b) multi-disciplinary investigations on soil-microbial dynamics to explain the microbial assemblage and counter-responses in wheat rhizosphere under drought conditions; c) by integrating the wheat-root signaling behavior with the soil-microbial counter responses, which will form the basis to devise ‘rhizosphere engineering’ strategy for improved microbial assemblage and drought tolerance in wheat. Consequently, the outcomes will significantly advance the fundamental aspects of plant-microbial crosstalk under drought conditions in natural soil environment, and emerging field of microbe-aided drought smart cultivation.